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Chapter 1 

Il4"RODIJCTIOh 

1.1 Motivation 

The turbulen t  shear  l aye r  is an important flow s t r u c t u r e  i n  most 

i n d u s t r i a l  combustors. Premixed flames are s t a b i l i z e d  by hea t  

r e c i r c u l a t i o n  involving t h e  recyc l ing  o f  h o t  products which are mired 

with coid i..?actants i n  a turbulen t  shear  l aye r .  Diffusion flames are 

cont ro l led  by t h e  r a t e  a t  which f u e l  and ox id ize r  mix i n  a turbulen t  

shear  layer .  

There has  been considerable  interest  i n  premixed combustion 

r e l a t ed  to  gas  tu rb ine  engines  because o f  t h e  po l lu t an t  sdvantages 

(Jones e t  e l ,  1978) .  Premixed combustion i n  model gas t u rb ine  

combustors can give a twentyfold decrease i n  n i t r i c  oxide emissions 

(Lefebvre, I97?). A p a r t i c u l a r l y  simple experimental  conf igura t ion  

incorporat ing the  aspec ts  of premixed combustion s t a b i l i z e d  i n  a 

turbulen t  shear  layer is  t h e  rearward-facing s t e p  combustor (Figure 

1.1) .  A premixed flame forms i n  a two-dimensional tu rbulen t  shear  

layer  formed a t  the  edge of a rearward-facing s t ep .  S t a b i l i z a t i o n  is 

achieved by r e c i r c u l a t i o n  of hot  products behind the  s t e p  which mix 

with the  incoming premixed r e a c t a n t s  i n  t h e  shear  layer .  

The two-dimensimal, rearward-fecing s t e p  combustor f a c i l i t a t e s  

easy access  fo r  experimental viewing by advanced l a s e r  d i agnos t i c s  and 

flow v i sua l i za t ion .  Measurements i n  tu rbu len t ,  r e a c t i n g  flows a r e  

limited and necessary for comparison t o  tu rbulen t  models. The 

rearward-fac inp; or backward-facing s t e p  flow has  been the  subjec t  of 

considerable  modeling e f f o r t s  (Marvin, 1977 ,  Ashurst ,  1979). Also 
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r e c e n t l y  Ghoniem et e l  (1980) used a rendom 

1973) t o  model t he  rearward-facing 

two-dimensional i c y  of t he  rearward-facing 

t r a c t a b l e  f o r  modeling. 

vortex technique (Chorin, 

s t e p  combustor. The 

s t e p  f l o w  make it  more 

I n  ear l ier  work, Ganji  end Sawyer (1980) descr ibed t h e  flow f i e l d  

of the  rearward-facing s t e p  cambustor with high speed s c h l i e r e n  

photography. They found t h e  flow f i e l d  is doetinaced by large scale 

s t r u c t u r e s  with an ordered p a t t e r n  previously unreported i n  combustion 

flows. The r eac t ing ,  t u rbu len t  shear  laver s t r u c t u r e  i s  s imi la r  t o  

t h a t  found i n  turbulent  mixing layers where t h e  importance of large 

s c a l e  s t r u c t u r e s  has  a l ready been e s t ab l i shed  (Brown and Roshko, 

1974). The purpose of t h i s  work is to  quant i fy  t h e  e f f e c t  of 

combustion on t h e  shear  layer dynamics. 1Ae tu rbu len t  v e l o c i t y  i s  

mapped i n  d e t a i l  by l a s e r  Doppler velocimetry (LDV) f o r  both 

isothermal and r eac t ing  flows. The e f f e c t  of combustion on t h e  

rearward-facing s t e p  flow p r o p e r t i e s  such as the  shear  layer  growth 

r a t e ,  entraimuznt ra te ,  turbulence development, and laree s c a l e  

s t r u c t u r e  developrnent a r e  determined. 

1 . 2  Bac kground 

The turbulent  s t r u c t u r e  of the rearward-facing s t e p  i s  l a r p e l v  

preserved under combustion. A discussion of i t s  flair  f i e l d  w i l l  lead 

t o  a b e t t e r  understanding of t he  r eac t ing  f l o w .  me backward facing 

s t e p  flow can be separated i n t o  two rep ions :  i )  t h e  mixing l ave r  

region and i i )  t h e  r e l axa t ion  repion (F igu re  1 . 2 ) .  The mixing layer  

r rgion includes the  flow from t h e  i n i t i a l  boundary laver  a t  s epa ra t ion  

t o  thc rrattachmcnt p o i n t .  The r e l axa t ion  region covers from flow 

rt*.ittiit.timiint t o  thv point of f u l  1 r o c w t ~ r v  of R tu rbulen t  boundarv 
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layer. The first region normally extends 5 - 7 step heights 

downstream of the step (Eaton and Johnston, 1980a). The reattachment 

region covers from reattachment to a distance of about 30 times the 

mixing layer thickness at reattachment (Bradshaw and Wng, 1972). 

This "be mixing layer in a 

rearward-facing step flow is often called a reattaching shear layer. 

The reattaching shear layer is initially planar but then curves toward 

the wall and eventually impinges on the wall at reattachment. Tne 

turbulent structure of planar mixing layers is very similar to the 

reattaching shear layer. Since planer mixing layers have been studied 

estensively, their current state of understanding will be discussed 

next. 

study focused on the mixing layer region. 

Mixing layers, The current understanding of the nature of 

turbulent mixing lavers stems from the work of Brown and Roshko 

(1974). In a series of shadowgraph photog-aphs they showed that the 

layer is composed of large scale, two-dimensional tollup vortices. 

The vortices or eddies evolve from a Kelvin-Helmholtz instability of 

the initial shear layer (Sherman, 1976). These two-dimensional 

large-scale structures grow by entrainment of fluid and pairing as 

they are convected downstream (Winant and Browand, 1 9 7 4 ) .  Pairing of 

eddies is the uniting of two neighboring eddies into cne with twice 

the original size. The pairing process is a result of the inherent 

instability of two parallel line vortices (Moore and Saffman, 1975). 

The growth of the edd 

whole.  

The process o f  

shtBnr layer and then 

es C,.=tt-rminrs the growth of the shear layer as  I )  

f . r s t  bringing the  irrotational fluid into the 

a t v r  m i x i n p  i t  microscopicallv is Riven thc 
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names entrainment and mixing. The two processes are found t o  be almost 

s epa ra t e  and d i s t i n c t  i n  mixing l a y e r s  (Dimotakis and Brown, 1976). 

The l a rge  s c a l e  s t r u c t u r e  growth which i s  responsible  f o r  e n t r a i m e n t  

i s  mainly a two-dimensional process and not a s t rong funct ion of 

Reynolds nmber .  

I n  the  i n i t i a l  shear l a y e r ,  mixing i s  a molecular d i f f u s i o n  

process v i t h i n  the  l a r g e  s c a l e  s t r u c t u r e s .  At Reynolds numbers 

g r e a t e r  than 10' based on the  shear l a y e r  thickness ,  Koarad (1976) 

found a three-dimensional i n s t a b i l i t y  appears which inc reases  mixing 

by 25%. More recen t ly ,  Roshko and Bernal (1981) reported an i n t r i c a t e  

three-dimensional s t r u c t u r e  t o  the two-dimensional eddies  which 

c e r t a i n l y  enhances mixing. Thus the mixing is  found t o  be Reynolds 

number dependent. 

The i n i t i a l  condi t ions can have a pronounced inf luence on the 

l a rge  s c a l e  s t r u c t u r e  formation and the  subsequent shear l aye r  growth 

and turbulence development. In  a comprehensive review of mixing 

l a y e r s ,  Birch (1980) suggests t h a t  the shear layer flow w i l l  not 

become completely independent of the i n i t i a l  condi t ions u n t i l  

Re, > 2 x IO6. A t  lower Reynolds numbers, t he  s t a t e  of the boundary 

layer  w i l l  inf?vevce shear l aye r  growth r a t e ,  v i r t u a l  o r i g i n ,  and 

turbulence development. The r e l a t i o n s h i p  between the i n i t i a l  

condi t ions and t h e  shear l aye r  p rope r t i e s  i s  s t i l l  unresolved. Some 

researchers  report  an increase of the  growth rate when the i n l e t  

boundary layer  i s  t r ipped (Wygnanski and F i e l d e r ,  1970, Batt, 1975) 

while o the r s  report  a decrease (Browand and Lat igo,  1978). Husain and 

Hussain (1979)  t r ipped t h e  boundary layer  i n  a h a l f  je t  mixing l aye r  

and found t , ,e  growth r a t e  i s  lower a t  f i r s t  and higher l a t e r .  
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High free stream turbulence influences the shear layer 

development. Birch (1980) suggests that the free stream turbulence 

primarily influences the shear layer through the inlet boundary layer 

and can be ignored for levels less than 0.6%. Chandrsuda et el (1978) 

found that at high free stream turbulence levels the two-dimensional 

eddies largely disappear and suggest that the asymptotic state of the 

turbulent mixing layer is more three-dimensional. 

Rearwaxd-facing step: The mixing layer region. The mixing layer 

region of the rearward-facing step flow, often called the reattaching 

shear layer, differs from the planar mixing layer. The reattaching 

shear layer is initially planar, then curves toward the wall and 

impinges on it at reattachment. This curvature is thought to be 

responsible for the rapid decrease in shear stress near reattachment 

(Eaton and Johnston, 1980a, Castro and Bradshaw, 1976). 

- 

The recirculation zone behind the step results in variable, 

non-zero velocities that cause the velocity difference across the 

layer The velocity difference in a 

planar mixing layer is constant. Also the turbulence levels in the 

recirculation zone are higher (Kim, Kline and Johnston, 1978). 

Pressure driven, stress bearing fluid is swept into the recirculation 

zone from the reattachment region (Bradshaw and Wong, 1972). This 

inceases the turbulence levels in the mixing layer (Eaton and 

Johnston, 1980a). Again the initial conditions influence the flow 

development. Besides effecting the mixing layer properties discussed 

earlier, variation of the boundary layer state changes the 

reattachment length (Eaton and Johnston, 1980a). A comprehensive 

revic.w of backward-facing step research is given bv Eaton and Johnston 

to vary with downstream distance. 
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(1980b). 

Rearward-facing s t e p  combustor. The only previous experiments on 

t he  rearward-facing s t e p  combustor were performed by Ganj i  and Sawyer 

( 1983). Using high speed sch l i e ren  photography they discovered that 

t h e  r eac t ing  flow is  dominated by la rge  s c a l e  coherent s t r u c t u r e s  

found i n  mixing layers .  Combustion i s  pr imar i ly  confined to  t h e  

eddies  as they e n t r a i n  premixed r e a c t a n t s  and hot  products. The 

spread of  combustion is linked to  the  growth and development of t he  

l a rge  s c a l e  s t r u c t u r e s .  Ganji  and Sawyer a l s o  described the  pol iu tan t  

and s t a b i l i t y  c h a r a c t e r i s t i c s  of t he  flow. They made t h e  average 

measurements of t he  major gas spec ies  throughout t he  flow f i e l d  and 

obsewed flashback and blowoff with high speed sch l i e ren  photography. 

1 .3  Goals 

The primary aim of t he  present work i s  t o  assess t he  e f f e c t  of 

combustion on the turbulen t  s t r u c t u r e  of the  rearward-facing s t e p  

flow. This includes the  e f f e c t  of combustion on the  shear l aye r  

growth, turbulence l e v e l s ,  reattachment length,  and la rge  s c a l e  

s t r u c t u r e  development. To ca r ry  out t h i s  goal the  following ob jec t ives  

a r e  se t  down: 

1 .  

2 .  

3 .  

To cons t rac t  and develop a frequency s h i f t e d ,  l a s e r  Doppler 

velocimeter (LDV) and make unambiguous, time-resolved, v e l o c i t y  

measurements i n  the  turbulen t ,  r eac t ing ,  r e c i r c u l a t i n g  flow. 

To develop the computer hardware and software t o  acquire  the  

in s t an t ious  v e l o c i t y  measurement and c a l c u l a t e  the  appropiate  

turbulent  q u a n t i t i e s .  

To obta in  a de ta i l ed  mapping of the mean ve loc i ty  turbulent  

i n t e n s i t y  i n  both the reac t ing  end non-reacting flow. To 

and 
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evaluate the shear layer growth rate, entrainment rate, and 

rec irc luat ion length in both cases. 

4 .  To record the velocity probability density functions (PDFs)  and 

determine the effect of combustion on the higher order moments. 

5. To compare the large structure formation and development in the 

reacting and non-reacting shear layers by frequency analysis of 

the LDV signal and visualization of the flow field by high speed 

schlieren movies. 



r -  

c 
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Chapter 2 

M P B R I ~ A L  APPAIUTOS AND IlSTRWENTATIO# 

2.1 The Two-Dimensional Combustor ---- 
The two-dimensional combustor apparatus was basically unchanged 

from that described by Ganji (1979) or Ganji and Sawyer (198L'). n e  

major improvements included accurate pressure regulation, lowred 

inlet turbulence levels, and elimination of the air cooling in the 

test sect ion. 

A echemtic of the overall system is viewed in Figure 2.1 and 

photographs are shown in Figures 2.4 and 2.10. The coordinate system 

used in the point measurements is given in Figure 2.3. A compressor 

supplied air at a maximum gage pressure of 650 kPa and a maximum 

flowrate ol 0.5 kg/s. A Fisher series 99 pilot operated pressure 

regulator maintained the air pressure within +1X of the set value. 

The air was dried below 20% humidity by a desiccant drier and filtered 

by a Bslston air fi.ter (Balstoo Filter Products, Lexington, Mass.). 

The BalsLon type A filters have a 99.9999% retention efficienc) for 

0.6 micton particles. The air stream was split and metered by two 

sonic nozzles which were calibrated at the Naval Air Rework Facility 

in Alameda, California to an uncertainty of less than .25%. During 

the laser Doppler velocimetry (LDV) measurements, additional air 

containing the particle seed was added directly downstream of the 

nozzles (See Section 2 . 5 . 6 ) .  The air was recombined at a manifold and 

passed through three parallel Venturi tubes. Fuel was injected at the 

throat of each Venturi tube .  

- 

The propants furl was ,,upplied by two 4 5  kg bottles of liquid 



propane placed in a t e m  heated water b r t h r  to maintain a constant fue l  

p reo ru r r .  "he fue l  waa metered by a F i s h e r P o r t e r  (No. 

FP-3/4-27-C-l0/80) or a Matheron 305 r0tapl.t.t dependin$ on t h e  

flowratr requirements. Ihc fue l  f l o u  was controlled by a needle  valve 

downatrean of t h e  rotmeters. Ihe  fue l  then parred t h r u  a rolenoid 

shutoff  valvc and flame arrertor before mixin8 with the a i r  i n  the 

ventur i  s ec t ion .  

Thr cross s e c t i o n  of t h e  comburtor i n  rhown i n  F i i u r e  2.2.  After  

t h e  fue l  and a i r  were mixed i n  t h e  v e n t u r i s ,  they en tered  a en* meter 

long prtwix rection 51 mw high and 173 mm wide. I h c  r e c t i o n  was 

packed u i t h  f i n e  grade r t a i n l e r r  rtael wool t o  reduce the i n l e t  

turbulence Icvel and prevent flashback. A r t a i n l c r r  steel rcreen (80 

mesh) was stretched across  t h e  end of t h e  premir r e c t i o n  t o  contain 

t h e  packinK:. A brass foi l  r a f t t y  part was desipned t o  blowout at 

excessive pressures .  The I:,)*. converged over t h e  backside of a 

profiled s t e p  (Ganj i ,  1979) with a 2 : '  a r e a  rat io .  n\c  

tuo-dimenrimal &hear l ayer  fonncd at t h e  edge of t h e  25 0111 high s t ep .  

Thc t c s t  s ec t ion  was 220 mm long, 173 m wide, and 51 IIW high 

p i v i .  : an aspct?  r a t  it) (channel width t o  s t e p  h e i l h t )  of 6 . 9 .  Quartz 

windows ( 1 ? . 7  mm t h i c k ,  Corning 7940 fused s i l i c a )  were i n s t a l l e d  on 

rhc r ide r  of t h e  t e s t  s e c t i o n  cxporin8 13 ann of the  step and cxtendinp 

the  c w t i r c  length of the  t e r t  s ec t ion .  Access port8 (4 .8  am d i r . )  

ucre- provided on the  c c n r r r l i n c  of t he  t o p  and bottom p l a t e r  of t h r  

t e s t  ricrtinn at IO atm i n t e r v a l s  dowis t r cm of t h e  r t c p .  %e hot 

cxhnust  p r s c s  prrnzd w t  of the  t e r t  ncction in to  a 100 mm d i e n c t r r  

t-xhru!:t pipe-. Ctwlinp uatrr  flowed tlrrii t h e  r ea r  of t h e  t e s t  r r c t i o n  

nn,l W : I S  spr.svc$d i n l o  t 1 1 v  c*)tlrntist .  A d i n t '  i n  t l r c '  vxhaurt line* 
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ro t a t ed  to  ad jus t  t he  test section prersure  which w a s  ret at m e  

atmosphere fo r  a l l  tests. 

A s a f e t y  system was designed to  shut down t h e  combustor in case 

of hazardous condi t ions .  

(see Figure 2.1)  and shut 

c i r c m s t  ances : 

Detector 

1.  Flame de tec to r  

2 .  Over pressure 

3. Water pressure 

4. Under temperature 

5 .  A i r  ;low 

6 .  Fuel leak 

Detectors were placed throughout t h e  rpstrm 

t h e  cambustor down under the  followiw 

Hazardous condi t ion  

Flame in premix sec t ion  ( f l rehback)  

Excessive pressure  i n  premix sec t ion  

Cooling water loss 

Exhaust temperature drop (flameout) 

A i r  flow loss 

Propane leak i n  room 

The steam heated fuel  baths  wtre equipped with a independent s a f e t v  

s y s t e m  tha t  turned o f f  the  steam and rang an alarm i f  t he  water bath 

temperature became too  high.  

To i g n i t e  the  combustor, a hiRh vol tage  i g n i t o r  rod was inse r t ed  

i n t o  the  shear layer  from t h e  top  p l a t e .  The i g n i t o r  was located 50 

mm downstream from the  s t e p  and was normally withdrawn from t h e  test 

sec t ion  a f t e r  i g n i t i m .  

Chrome1 a l m e l  thermocouples were i n s t a l l e d  throughout t he  system 

and connected t o  a s i n g l e  se l ec to r  switch.  A d i g i t a l  thermometer 

(Omqza model 2160A-K) displayed t h e  temperature r i t h  an accuracy of 

- +1K. Thennocouplco measured the pas temperature a t  t he  sonic nozzles ,  

fuel rotameters ,  and the  tea t  sec t ion  entratrcc. Pressure t ransducers  

( S r n s o  Mrtri-  model SP91) sensed the pressure uprtrcmn of each nozzle 

and rui*1  rotrmetrr w i t h  nr? accurncv of 1: of fc!l s c a l e .  A single 
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dilpital  panel meter indicated t h e  pressure readings.  

2 . 2  Data Acquis i t ion System - 
A PDP 11/34 computer system was u t i l i z e d  t o  c a l c u l a t e  aad store 

the  ove ra l l  flow condi t ions  of  t he  combustor . juring the  experiments. 

The software pacP.age contained a;, t h e  ca l ibra t ic ln  curves of t he  fuel 

rotameters ,  sonic nozzles ,  pressure t ransducers ,  and the  air rotameter 

(only used during LDV measurements). A l l  t h e  pe r t inen t  pressures  and 

temperatures n r c  d i r e c t l y  keyed i n t o  a CRT t e rmina l .  "he des i red  

equivalence rati3,  @ ,and re ference  flow v e l o c i t y ,  Uo,(average i n l e t  

ve loc i ty )  were input and the  program ca lcu la t ed  t h e  corresponding 

s e t t i n g s  for  t he  sonic nozzles and fue l  rotameter. A stsamary of the  

combustor da t a  s tored by the  computer program is shown i n  2.1. 

The system temperatures and pressures  were cons tan t ly  updated to  

maintain the  desired equivalence ra t io  and i n l e t  flow ve loc i ty .  -.be 

accuracy of t he  i n l e t  ve loc i ty  and the  equivalence r a t i o  settings uere 

1 . 3 2  and 62 respec t ive ly .  

2.3 Schlieren System 

Table 

An important aspect of the  experiments was a series of high speed 

sch l i e ren  movies and long exposure photographs taken of t h e  turbulent  

f r e e  shea: layer .  A conventional "z" conf igura t ion  was used i n  the  

experiment (Figure 2 . 5 ) .  The output of a IO00 watt xenon a rc  lamp 

(Oriel Opt ics ,  model C-60-50) was coll imated by a 3.94 H foca l  length ,  

0 . 3  H diameter spher ica l  mirror .  The coll imated l i g h t  passed through 

the t e s t  sec t ion  and was refocused by a second iden t i ca l  mirror onto  

t h e  sch l ie ren  a t o p  plane. A lenae imaged l i g h t  emanating from t h e  test 

sec t ion  onto the  camera f i l m  planc. A 102 x 127 am box camera was used 

t o r  t h v  long exposr irc  (1 /30  sec)  photographs. The high speed mavies 
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were recorded by a Hycam camera (Redlake Corp., model 416004) at 

f r a a i : q  r a t e s  ranging from 5000-8000 frameslsec. 

'iovies v i s u a l i z i n g  t h e  e n t i r e  flow f i e l d  and enlarged high 

res .*ut ion mowies of j u s t  t h e  i n i t i a l  por t ion  a f  t h e  flow f i e l d  were 

o h  .ned. Camplete s p e c i f i c a t i o n s  of t h e  sch l i e ren  o p t i c s  are given 

i n  Table 2.2  and Figure 2.5. 

4 t y p i c a l  polar diagram o f  t h e  de f l ec t ed  l i g h t  at t h e  sch l i e ren  

s t o p  plane i s  shown i n  Figure 2.5. The d i s t i n c t  v e r t i c a l  and 

hor izonta l  d e f l e c t i o n s  r e s u l t  from temperature g rad ien t s  on t!w 

cmbu.;tor sur faces .  Thermal boundary l a y e r s  on t h e  t o p  of t h e  s t e p ,  

and the  top  and bottom p l a t e s  o f  t h e  cambustor produced t h e  b r igh t  

vt r t i c a l  l i n e s .  Light de f l ec t ed  from thermal g rad ien t s  near t he  f ront  

of t he  s t e p  generated t h e  hor izonta l  l i n e .  The broad, d i spe r se  

pa t e r n  on the  photograph r e su l t ed  from index of r e f r a c t i o n  g rad ien t s  

in t he  shear  la* - 1 .  In  order  t o  v i s u a l i z e  t h e  shear  l aye r ,  t h e  

sch l i e ren  s tops  were taylored to h igh l igh t  t he  d i spe r se  d e f l e c t i o n s  

from the  shear  l aye r  and minimize in t e r f e rence  from t h e  w a l l  boundary 

lavc-rs .  

Tho schlieren photography was only used fo r  v i s u a l i z a t i o n  of  t he  

shear  layer .  o attempt was made t o  deduce temperature information 

from t h t  phot,>,graphs. Ganji  and Sawyer (1980) give a d e t a i l e d  

d i s c ?  sion af l i g h t  r e f r a c t i o n  i n  a combusting media. 

'! . Hot d i r e  Anemorretry 

A 1  tllough most of the  ve loc i ty  measurements were ca r r i ed  out using 

l a s e r  Do.pier velocimetry,  the  superior frequency response end ease  of 

np* .a t ion  of h o t  wire anemometry made t h e  technique useful  f9r the  

cha rnc t r r i za t  ion of the  entry flow. The hot wire measurements were 

- ..- 
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l imited t o  t h e  e n t r y  region where the  flow d i r e c t i o n  was wenbigJous.  

Hot wire measurements i n  t h e  e n t r y  region also served as a check OR 

I-he LDV v e l o c i t y  measurements. 

The hot w i r e  equipement included a TSI model 1010 Heat F l u x  

System and a model 100SB Linearizer .  Wollaston w i r e  (1OX rhoduim, 90X 

platinum) w a s  soldered across a TSI 1210 '@u" probe. "be sensor had an  

a c t i v e  length of 1 um~ and a diameter of  8 microns. The hot w i r e  probe 

was c a l i b r a t e d  i n  the  l o w  speed wind tunnel f a c i l i t y .  A t y p i c a l  

c a l i b r a t i o n  curve is  shown i n  Figure 2.7. 

Both mean v e l o c i t y  and nus turbulence measurements were made i n  

t h e  e n t r y  f l o w .  The hot wire vol tages  were displayed on a d i g i t a l  

v o l t  meter capable of measuring t h e  t r u e  w s  voltage.  The s i n g l e  

ses.ple uncertainty (Kline and McClintock, 1953) of  t h e  mean v e l o c i t y  

measurement a t  a t yp ica l  v e l i c i t y  of 10 m / s  was 1.5%. The error i n  

t h e  nus v e l o c i t y  was much more d i f f i c u l t  t o  assess. The frequency 

response of t he  probe was estimated with a square wave test t o  he 5 

kHz. Individual LDV p a r t i c l e s  follow t h e  flow more c l o s e l y  than t h i s  

and the m s  turbulence l e v e l s  measured by the  hot wire were lower than 

the  LDV measurements. Also a t  v e l o c i t i e s  above 10 m / s  t h e  probc 

v ib ra t ed  at 9 . 5  kHt producing spccious nus turbulence of t he  same 

order  a s  the  ac tua l  f l o w  turbulence.  

The ftequcncy spectrum of t h e  hot wire f loc tua t ions  were recorded 

b y  a d i g i t a l  f a s t  Fourier transform analyzer (GenRad model 2 5 1 2 ) .  

Shear lavers  are s e n s i t i v e  t o  flow i n s t a b i l i t i e s  which include 

accoust ical  resonances i n  the combustion tunnel .  The hot wire 

spt-ctrum 111 thc r n t r v  f l m  was checked t o  confirm t h a t  a l l  such 

rc'st)nanccs wt.rt* rernovt*d ( s c r  Sr-rt  ion  3 .  I for more d e t a i l s ) .  
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2.5 Laser Doppler Velocime&ry - 
Due to the hostile nature of the flow eavirorraent, laser Doppler 

velociaaetry was selected to quantify the velocity flow field. Ihe hot 

recirculating, turbulent flow precluded the use of any other 

technique. Hot wire anemometry, widely used in turbulent 6heat flow 

research, cannot withstand the high temperatures or resolve the flow 

direction. Laser Doppler velocimetry (LDV), also called laser Doppler 

anemometry (LDA), is able to obtain measurements in canbusting flows 

and resolve the velocity direction while maintaining high frequency 

response and spacial resolution. LDV has the additional advantages of 

producing a linear output and causing no flow disturbance. 

The technique was first demonstrated by Yeh and Cumins (1964) 

and since that time has widely used for measurements in laninar and 

turbulent flows. Applications to non-reacting flow phenomena are 

extensive and have heen reviewed by Durst et el (1972). Measurements 

in combusting systems are not as numerous and subject to the unique 

problems of high temperature environments. Index of refraction 

inhomogeneities caused by chemical concentration and temperature 

gradients lead to difficulties in achieving a stable location of the 

laser teams in the flow. Scattering particle6 are required for LDV 

and must be made of refractory materials able to withstand the these 

high temperatures. "%e special problems of design and application of 

LDV systems for combustion nave been discussed at length by Self and 

Whitrlau (1976) and Chigier (1977) .  

2 . 5 . 1  Principles - of Operation. The LDV measurement technique ie 

based on the well known Doppler effect involving the frequency shift 

o f  l i g h t  waves s c a t t e r e d  by a moving object. With the development of 
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lasers which provided a coherent ,  monochromatic source of l i g h t ,  t h i s  

e f f e c t  w d s  exploi ted t o  make prec is ion  poin t  measurements of  

ve loc i ty .  P a r t i c l e s  are required t o  give s u f f i c i e n t  s ca t t e r ed  l i g h t  

i n t e n s i t y  and the  technique is l imi ted  by t h e  a b i l i t y  of t he  p a r t i c l e s  

to  follow the  flow f i e l d .  There are nmerous  types of LDV systems and 

these  a r e  described i n  var ious  reviews and in t roduct ions  t o  the  top ic  

such a s  Drain (19801, Durst e t  e l  (1972, 19761, Goldstein and Kreid 

(19761, Trol inger  (19741, Stevenson (19771, and Whitelaw (19751. 

The two most predominate op t i ca l  conf igura t ions  for  LDV are the  

dual  be-, r e a l  f r inge ,  d i f f e r e n t i a l  s c a t t e r i n g  system and the  s i i igle  

s c a t t e r ,  reference beam s y s t e m  (Durst e t  e l ,  1972). Due t o  t h e  ease 

of  alignment and b e t t e r  s igna l  qua l i t y ,  t he  dual beam, r e a l  f r inge  

system was chosen for  t h i s  experiment. In  gas flows, where the  

p a r t i c l e  dens i ty  is  low and the number of p a r t i c l e s  i n  the  focal  

volume are  few, Drain (1972) has shown t h e o r e t i c a l l y  tha t  t he  dual 

beam system w i l l  give a super ior  s igna l  t o  noise  r a t i o  (SNR) than the  

reference beam system. 

A t yp ica l  dual beam, r e a l  f r inge  o p t i c a l  conf igra t ion  i s  

i l l u s t r a t e d  i n  Figure 2.8. The l a s e r  output i s  s p l i t  i n t o  two beams 

and focused in to  the flow. An e l l i p s o i d a l  volume of planar f r inges  is  

formed a t  the  in t e r sec t ion  of the  two beams w i t h  a spacing, 

where 1 is the  l a se r  wavelength and o is  the  beam cross ing  angle.  The 

beam crossing angle is Xiven by the focal length of the focusing l ens ,  

f ,  and t h e  beam separa t ion ,  d,, ( 0  = s i n ” d s / f ) .  P a r t i c l e s  passing 
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through t h e  f r inge  p a t t e r n  w i l l  scatter l i g h t  with a frequency, 

VD dfU 2.2 

where U i s  the  v e l o c i t y  o f  t h e  p a r t i c l e  perpendicular  to  the  p lanar  

f r inges .  The foca l  volume i n  an e l l i p s o i d  (Adrian and Goldstein,  

1971) with t h e  dimensions (Figure 2.8): 

d, = d/cos(0/2) 

dy = d 

d, = d/sin(0/2)  

2.3 

The waist diameter ,  d ,  i s  the  d i f f r a c t i o n  l imi ted  size o f  t h e  l a s e r  

beam, 

where D i s  the  l a s e r  beam diameter (def ined a t  t h e  i /e  i n t e n s i t y  

poin ts )  a t  the  focusing l ens  (Goldstein and Kreid,  1976). 

Light sca t t e red  by p a r t i c l e s  moving through t h e  foca l  volrrme i s  

modulated at the  Doppler frequency given by equat ion 2 . 2 .  The 

c o l l e c t i n g  lens  images l i g h t  emanating from the  focal  volume on t o  a 

photomult ipl ier  tube (PMT). Signal processing deduces t h e  Doppler 

frequency from the  PMT o u t p u t .  

The op t i ca l  se tup  shown i n  Figure 2.8 has one drawback. A 180 

degree s h i f t  i n  the  ve loc i ty  d i r e c t i o n  w i l l  result i n  an i d e n t i c a l  

Doppler  frequency. This is refered t o  as "d i r ec t iona l  ambiguity". 
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The d i f f i c u l t y  is overcome by s h i f t i n g  one of  t h e  beams to  a s l i g h t l y  

d i f f e r e n t  Arequency which causes t h e  f r i n g e s  t o  move a t  a constant 

v e l o c i t y  (Durst  and Zarb, 1974) .  A p a r t i c l e  t h a t  is  s t a t i o n a r y  i n  t h e  

foca l  volume w i l l  scat ter  l i g h t  a t  t h e  s h i f t e d  frequency, vo. As long 

as the  f r i n g e  v e l o c i t y  is  higher than any p a r t i c l e  v e l o c i t y  i n  t h e  

same d i r e c t i o n ,  a l l  v e l o c i t i e s  w i l l  r e s u l t  i n  a unique, nonzero 

Doppler s h i f t  given by, 

i n  t h i s  experiment an acousto-optic modulator, a Bragg c e l l ,  produced 

the  frequency s h i f t  (Durgo and Whitelaw 1975). 

2.5.2 The Optical  System. The ac tua l  o p t i c a l  system designed for 

t h e  experiment is  i l l u s t r a t e d  i n  Figure 2.9. The output of an 

argon-ion l a s e r  tuned t o  the  514.5 nm l i n e  (0.3 wa t t s )  passes through 

two lenses  (11 and 12) and a p o l a r i z a t i o n  r o t a t o r  (1/4 wave p l a t e ,  

Oriel  model 2566) .  A path compensated beam s p l i t t e r  (OEI, Karlsruhe, 

West Germany) outputs  two beams with a 50 mm separat ion.  The beam 

s p l i t t e r  is  po la r i za t ion  s e n s i t i v e  and the  1/4 wave p l a t e  is r o t a t e d  

t o  equal ize  t h e  i n t e n s i t y  of the  output beams. Also the  f r i n g e  

p a t t e r n  i n t e n s i t y  i s  dependent on the  p o l a r i z a t i o n  of t he  beams. 

Maximum in t e r f e rence  i s  obtained when the  two beams are l i n e a r l y  

polarized perpendicular to  the  plane containing them (Stevenson, 

1 9 7 7 ) .  

- 

One beam passes through the  Bragg c e l l  and is down s h i f t e d  by 40 

YHz causing the  f r inges  t o  move in t he  opposite d i r e c t i o n  t o  the  main 

flow. The Rragg c e l l  (TSI model 9 R 2 )  is  t i l t e d  t o  ob ta in  proper phase 
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matching (Yar i f ,  1975) of the  input and output beams r e s u l t i n g  i n  a 

Bragg c e l l  e f f i c i e n c y  of 60%. The o t h e r  beam passes through a path 

compensator and a n e u t r a l  dens i ty  f i l t e r  (60%) to  maintain equal path 

l eng ths  and beam i n t e n s i t i e s .  The laser beams are focused i n t o  t h e  

test  sec t ion  by an 82 mm diameter,  300 mm foca l  length lens (13). 

Optical  access  i s  provided by 12 us\ t h i c k  qua r t z  windows (Corning 

7 9 4 0 ) .  

The probe volume dimensions are given i n  Figure 2.9. The probe 

dimensions, pos i t i on ,  and f r inge  pa ra l l e l i sm are a l l  subjec t  t o  the  

propagation p rope r t i e s  of Gaussian laser beams predicted by s c a l a r  

d i f f r a c t i o n  theory (Hanson, 1973, Durst and Stevenson, 1977). For 

proper alignment, the  laser c a v i t y ,  l ens  p o s i t i o n s ,  foca l  l eng ths ,  

o p t i c a l  path l eng ths ,  and access  windows must a l l  be taken i n t o  

account. The argon-ion l a s e r  operated i n  a TEM,, mode producing a 

Gaussian shaped output beam. Lenses 11 and 12 were se l ec t ed  t o  

p a s i t i o n  t h e  l a s e r  waist  at  t he  beam i n t e r s e c t i o n  with a diameter of 

96 microns. 

I n  l i n e ,  forward s c a t t e r  c o l l e c t i o n  o p t i c s  were used t o  ob ta in  

the  maximum SNR (Durst and Whitelaw, 1971). P a r t i c l e  s c a t t e r i n g  i s  

governed by Mie s c a t t e r i n g  theory ( p a r t i c l e  diameter = ), ) where t h e  

maximum s c a t t e r i n g  i n t e n s i t y  i s  i n  the  forward d i r e c t i o n .  The laser 

beams were blacked by beam dumps and t h e  s c a t t e r e d  l i g h t  from the  

f o c a l  volume was co l l ec t ed  by an f / 6  l ens  (14 )  and focused on t h e  0.5 

mm diameter pinhole of t h e  PMT housing. An ad jus t ab le  aper ture  s t o p  

W R S  positior.ed a f t e r  the c o l l e c t i o n  lens t o  minimize s c a t t e r i n g  from 

t h t >  quar t : .  windows and aJj i :st  l i gh t  l eve ls  on :he PVT t o  prevent 

~ . I I I I I . I I  I ~ ~ I I .  A 1 n m  b3ndp; lSS  i n t t * r f t * r v n i . t -  f i 1 tc . r  was i n s t a l l e d  In thc 
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The P a c i f i c  Photametric model 3150 PI4T houriag incorporated 
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emir o ion. 

rulat.1 

tube encasement and a n i c k l e  coated exterior to  s h i e l d  against  RF 

no i re .  An EM1 PlciAfB PMT de tec t ed  and r p l i f i e d  t h e  s c a t t e r e d  l i g h t  

and output t h e  Doppler s i g n a l  f o r  procersing. 

The laser, transmission and c o l l e c t i o n  o p t i c s ,  and the PHI 

housing were a l l  secured to  a s i n g l e  o p t i c a l  bench. The b-nch top  was 

mounted t o  a m i l l i n g  t a b l e  which allowed the  t e a t  r e c t i o n  t o  be 

scanned i n  a l l  t h ree  d i r e c t i o n s .  The LDV o p t i c s ,  laser, and m i l l i n g  

t a b l e  are shown i n  a photograph of t h e  experimental apparatus i n  

Figure 2.10. Uost veloci tb  p r o f i l e s  were taken v e r t i c a l l y  acros8 t h e  

shear  layer  and a stepping motor d r i v e  was i n s t a l l e d  t o  e a s i l y  move 

t h e  t a b l e  i n  the y d i r e c t i o n .  A d i a l  i nd ica to r  with a r e s o l u t i o n  of 

0.01 nun displayed the y pos i t i on .  The y d i r e c t i o n  contained the  s t e e p  

v e l o c i t y  g rad ien t s  and the  m i l l i n g  t a b l e  could be posit ioned t o  - +.OS 

mm. The I. and t d i r e c t i o n s  had a pos i t i on ing  accuracy of +0.5 om. 

2 . 5 . 3  Signal Processing. The s igna l  processing system for t h e  LDV 

measurements i s  shown i n  Figures 2.10 and 2.11. The output fram the  

PMT i s  amplified by a 140 MHz bandpass, xl00 gain p r e m p l i f i e r  

( P a c i f i c  Photometric model AD-6). The frequency s h i f t  (40 X H t )  of the  

s i n g l e  Bragg c e l l  is  undesirably l a rge .  Therefore the  s h i f t  is 

e f f e c t i v e l y  reduced by the "downmix" c i r c u i t  of t he  TSI model 985 

driver /downshif ter .  A 40 MHz o s c i l l a t o r  d r i v e s  both the  Bragg ce l l  

power m p l i f i e r  and the downmix c i r c u i t .  The e f f e c t i v e  frequency 

s h i f t  i e  s e l e c t a b l e  from 10 kHt t o  20 l4hz i n  R 1, 2,  5 ,  oequence. The 

frequency r h i f t  had a c a l i b r a t i o n  accuracy of 0.0025%. 

- 

A Macrodyne model 2096 wag se l ec t ed  t o  analyze the Doppler 
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frequency. Period counters  are prefered over frequency t r a c k e r s  f o r  

a n a l y s i s  of single r a r t i c l e  LDV s i g n a l s  found in tu rbulen t  gas flows. 

Under low duty r a t i o s ,  they can be operated with wide input  

b a d w i d t h s  allowing a wider range of p a r t i c l e  v e l o c i t i e s  than 

frequency t r a c k e r s  (Humphrey e t  e l  1975). 

The block diagrams f o r  t h e  Hacrodyne 2096 moduals are given in 

Figure 2.12 and 2.13. In t h e  Front Bad Detector  (FED), t h e  Dopplet 

s i g n a l  is f i r s t  amplified (XI o r  x10) and f i l t e r e d .  The *e lec tab le  

low pass and high pass f i l t e r o  ( 0 . 5 ,  2, 4, 8, 16, and 32 MEz, 40 

db/decade) se rve  two func t ions ,  removing t h e  pedes ta l  aad f i l t e r i n g  

o u t  background noise .  A th reshold  l e v e l  descr iminator  OD t h e  f i l t e r e d  

output  prevented processing of r e s i d u a l  no ise .  An overload l e v e l  

d i scr imina tor  on the  Innpl i f ier  output e l iminated l a r g e  p a r t i c l e  or 

mul t i -pa r t i c l e  bursc8. 

The burs t  s igna l  e n t e r s  a zero c ross ing  de tec to r  coupled with a 

Schmidt t r i g g e r  ( F i b i r e  2.12). The Schmidt t r i g g e r  output6 a pulse  

everytime 'ae s igna l  c rosses  zero and behaves l i k e  a sinewave with an 

amplitude exceeding the  threshold l eve l .  

The Logic rad Output Display (LOG) module petforme the  5/8 

v a l i d a t i o n  t e s t  (Figure 2.13).  The time for 3 pulses  and t h e  t h e  f o r  

8 pulses  is compared. I f  they a r e  not d t h i a  a p re se t  accuracy, t h e  

s igna l  is not accepted. The hc rodyne  her  e i t h e r  a S/8 or lO/l6 

comparator fo r  t he  v a i i d a t i o n  test. The 5/8 comparator at an accuracy 

s e t t i n g  of 2 was used i n  the  experiment. This  required t h a t  t h e  two 

periods compere t o  about 1% accuracy. If t he  bu r s t  vas va l ida t ed  a 

t t s y n ~ t '  pulee was output .  A va l ida t ed  burs t  is o f t e n  described as  a 

The sync pulses  were e x t e r n a l l y  counted t o  d isp lay  the  r ea l i za t ion" .  I# 
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inrtantaneoue d a t a  rate (Figure 2.11). The period f o r  8 puloee (bu re t  

per iod)  was time4 by a 10 b i t  (1024 count) counter with v a r i a b l e  

ranges t o  cover 1.2 kiiz t o  100 t4Ez input frequenciee.  

The cotniter had a r e r o l u t i o n  of 2 n8. A t  a typical Doppler 

frequency of 8 MIlt uring the  5'8 camparator, t h e  b u r s t  1 '.,d + e  

measured t o  an accuracy of 0.2%. The 10 b i t  counter ou tpu t s  t n e  

period with t'ne scrme accuracy. A t y p i c a l  b u r s t  period of 500 count6 

would have an arcuracy of 0.2%. 

A mult iplexer  and ex te rna l  clock (0.1 o r  1 Mflz) were added t o  

output the t h e  between r e a l i z a t i o n s  o r  t h e  d a t a  period (Figure 

2.13). The bu r s t  per iod,  counter range, comparator s e t t i n g ,  

comparator accuracy, and d a t a  period were multiplexed Over a 16 

p a r a l l e l  l i n e  i n t e r f a c e  t o  a PDP 11/34 :omputer. An i n t e r n a l  D/A i n  

t h e  Macrodyne was connected t o  a d i g i t a l  v o l t  meter (DVM) f o r  an 

continuourr d i sp l ey  of the  bu r s t  period (Figure 2.11). 

2 . 5 . 4  Veloc i ty  - Data Acquisit ion .- - and - Reduction. A t y p i c a l  LDV d a t a  

record is  shown i n  Table 2.3. The LDV @yetem parameters and t y p i c a l  

values  a r e  indicated.  l n  addi t ion t o  the  da t a  d i r e c t l y  accessed by 

t h e  p a r a l l e l  l i n e  i n t e r f a c e ,  information on the record length,  f r inge  

spacing, Bragg c e l l  e b i f t ,  and probe loca t ion  were keyed i n t o  the  

computer. The LDV computer con t ro l  program co l l ec t ed  a 2048 point 

record on comand from the computer terminal.  The instantaneous 

v e l o c i t i e s  were ea l cu la t ed  ace01 ' in3 t o ,  

u t  = ( V D ~  - vo)/df 2.6 

where V D ~  is t h e  Doppler frequency of an individual  bu r s t .  Two types 
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of v e l o c i t y  rveregcs were ca lcu la t ed ,  ntmerical  aad time inte8cat.Q 

a v e r w r r .  The nrmotical averqer are l i v e n  by: 

2.7 

2.8 

h e r e  N i r  the record length,  0: 6~ t h e  mean v e l o c i t y  aad uw. i o  the 

rmr ve loc i ty .  There avtragcr rihich are ca l cu la t ed  from individual  

pcrrt;cle b u r r t r  are subject t o  v e l o c i t y  biaoing diDCUDDed by 

HcLash l in  and Ti rdeman (1973). In  turbulent  floe the hiuhar 

v e l o c i t y  p a r t i c l e s  have a higher p r o b a b i l i t y  of c r o r r i n g  t h e  f o o l  

v o l m e  than the lover r e l o c i t y  p u t t i c l e d  terulting i n  a b h r .  

Dimotakis (1976) r u g p e t e d  tha t  i n  h i8h  data fate ropimos the  b i r m i w  

error  could be circmvcntcd by t h e  use of the  time i n t t s ~ t a l e ,  

2.9 

2.10 

h e r e  % and urmst art the  time integrated mean and rmr v e l o c i t i e r ,  

rcrpect i v t l y .  The i n t e g r a l r  w r e  in.*Rtated n m e r i c a l l y  by the  

rectangular r u l e  and t i m e  weighted averager of the d m t c l  rrcotd ware 

atorcd a t  a l l  mearurcment loca t i ane .  

The probab i l i t y  d e n r i t y  function (PDF b t y  W I I B  8100 
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ca lcu la t ed  and mtored. Tbe v e l o c i t y  tecord van dividad i n t o  72 equal 

i n t e r v a l #  (bine)  bvtueen t h e  ruhm .ad u a u r r  v e l o c i t i e o .  l'he 

amber of v e l o c i t y  point. i n  each b i n  vao c a p u t e d  to determine t h e  

PDF. 

Again a t h e  c o r r e c t i o n  w a s  applied to  avert t h e  v e l o c i t y  bi8oing 

i n  t h e  PDF a t  high d a t a  rates. Each d a t a  point was weighted by the 

d a t a  period ( d t ) .  Typical PDF6 i n  the  ohear layer are shown i n  Figure 

3.28. 

Another b i a s ing  problem occurred w i t h  t he  PD?s. The Macrodyne 

output is inversely proport ional  to  t h e  v e l o c i t y ,  t h a t  is t h e  bu r s t  

count r e g i s t e r  is i n  equal u n i t s  of t i re  ( b u r s t  counts) uot 

frequency. Equal i n t e r v a l s  i n  v e l o c i t y  i n  the  72 b i n  PDF 611 not 

correspond t o  equal i n t e r v a l s  i n  bu r s t  counts. For so1e hi8h v e l o c i t y  

(low burs t  count) i n t e r v a l s  there will be no bu r s t  count value 

corresponding t o  t h a t  v e l o c i t y  i n t e r v a l .  The PDF i n t e r v a l e  r u s t  be 

weighted by the ratio of dBe/dBa where dBe i e  the exact width the  

v e l o c i t y  in t e rva l  i n  buret  counts ( i e  2.51) and dBa is t h e  possible  

nmber  of buret  count values that  f a l l  i n  t h a t  i n t e r v a l  ( i e  2) .  A l l  

t he  PDF8 were weighted i n  t h i s  faohLon. "his did not campletely 

e l imina te  the  b i a s ing  problem. Ihe co r rec t  method is t o  store t h e  PDF 

of the bu r s t  period and produce v e l o c i t y  PDF8 with equal i n t e r v a l e  of 

buret  period and not ve loc i ty .  

of 

S p e c t r r l  ana lys i s  of the Doppler s ignal  was also performed. 

Large d a t a  records (50,000 - 200,000 po in t s )  involving a m p l e  per iods 

of a minute or more were required t o  ob ta in  frequency s p e c t r a  v i t h  

s u f f i c i e n t  s ignal  q u a l i t y .  The PDP 11/34 had no provis ion for s torage 

of such large records and the on l i n e  fast Fourier t r m m f o m  (FF'T) 



roftware was very slow. Rence a PIT analpser  (GenRad model 2S12) 

procesred t h e  analog output f r a  t h e  b u r s t  period counter. Up to 512 

FFTe A t y p i c a l  

rpectrrm i r  rhom i n  Figure 3.66. This  is t h e  spectrm of t h e  ..e. 

component of t h e  burst  period r a t h e r  th8n t h e  Doppler burrt 

frequency. ?or l o w  turbulence levels t h e  r e l a t i o a o h i p  is l i n e a r ,  but  

for high turbulence l e v e l s  t h e  r p l i t u d e  of t h e  rpectra dl1 be 

biased.  The major use of t h e  spectra xar to quant i fy  t h e  frcquancp of 

t h e  l a r g e  male s t r u c t u r e s  i n  t h e  shear layer and t h e  value .;f t h e  

s p e c t r a l  dens i ty  w a s  u n h p o r t a n t .  

were averaged by t h e  analyzer to  ob ta in  t h e  spectrrr. 

2.5.5 Data V e r i f i c a t i o n .  The LDV system had t o  be checked to  

a s c e r t a i n  whether t h e  system vas generat ing the  c o r r e c t  v e l e c i t i e r  and 

- 

turbulence l e v e l s .  The g r e a t e s t  source of systematic error iuvolved 

adjustment of t he  Macrodyne front  panel s e t t i n g s :  t h e  threshold and 

overload d i sc r imina to r s ,  t h e  lovpass and highpass f i l t e r s ,  and the  

counter range. 

The threshold s e t t i n g  was determined by the  amount of noise  

measured at  t he  "F i l t e r ed  Output" (Figure 2 .12 ) .  The threshold l e v e l  

was set such t h a t  t he  noise  would not be v a l i d a t e d .  F i r s t ,  t he  

threshold l eve l  was c a l i b r a t e d  (Figure 2 . 1 4 ) .  The rinimrrm va l ida t ed  

sinewave mnplitvde was measured a s  a function of t he  threshold l e v e l .  

For a given threshold s e t t i n g ,  i f  the Doppler bu r s t  i s  above t h a t  

amplitude and f u l f i l l s  t h e  o the r  Macrodyne v a l i d a t i o n  c r i t e r i o n ,  i t  

w i l l  be va l ida t ed .  t h e  

noise  level  given by t h i s  curve.  

me threshold l eve l  could simply be set above 

This was found to be too s t r i c t  of a c r i t e r i o n .  The turbulence 

i n t e n s i t y  and d a t a  r a t e  a s  s function o f  the threshold s c t t i q  is 
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rhum i n  Figure 2.15. At lou threrbold rettipge the mire r a u l d  be 

va l ida t ed  md t he  turbulence i n t e n r i t y  would depend r t r o a g l y  om t h e  

threshold aetting. & t he  tbrerbold level uao increased t h e  

turbulence i n t e n s i t y  would becge p r a c t i c a l l y  threshold i n r e e e i t i v e .  

The turbulence i n t e n r i t p  uas never completely independent of t h e  

threshold setting s i n c e  ae t h e  threshold increased t h e  Uacrodyne crould 

only v a l i d a t e  the  l a r g e r  particles uhich do mot follow the flow as 

well. The threshold vas eet a t  t h e  bee of t h e  curve r e s u l t i n g  i n  t h e  

optimum data rate, noise  r e j e c t i o n ,  and particle rise va l ida t ion .  

This corresponded to  setting the threshold m i n i a m  va l ida t ed  sinewave 

amplitude to  90% of t h e  noise  anpl i tude at  t h e  "Fi l tered Output". The 

noise  l e v e l  versus  threshold s e t t i n g  c a l i b r a t i o n  curwe f o r  t h i s  

c r i t e r i o n  i s  given i n  Figure 2.14. 

The overload discr iminator  setting did not make a s i g n i f i c a n t  

improvement i n  the turbulence i n t e n s i t y  measurement. Large p a r t i c l e  

r e j e c t i o n  was not important and t h e  overload l e v e l  was simply set well 

above the  input s i g n a l  l e v e l s .  

As mentioned e a r l i e r  the v e l o c i t y  PDF was ca lcu la t ed  for each 

d a t a  record.  The PDF of t he  butut  period wa8 a l s o  displayed on the  

CRT terminal for  each 2048 point record t o  check the  Macrodyne 

o p r t a t i o n .  The Macrodyne only accepted a window of Doppler bu r s t  

frequencies determined by the  input f i l t e r s  and counter range. This 

window had t o  be l a r g e r  than the burst  frequency bandwidth. Also t h e  

Brags c e l l  s h i f t  had t o  be high enough t o  ob ta in  nonzero, unumbiguous 

v e l o c i t y  measurements. A l l  these c r i t e r i o n  could e a e i l y  be examined 

by viewing t h e  burst  period PDF. The boundaries of t h e  PDF were 

displayed i n  both time and frequency un i t e .  The m a x i m m  and minimum 



b u t s t  f requencies  were checked e a i n s t  t he  input f i l t e r 8  t o  prevear 

cu to f f .  ‘Ihe Bragg cell a h i f t  was adjusted so that t h e  minimtm Doppler 

frequency vas above t h e  r i n h m  f i l t e r  8etting of  0 . )  t l h .  Display o f  

t h e  MuairiaP and minim- burs t  period6 allowed t h e  operator to  bet t h e  

counter range t o  t h e  h ighes t  s e n s i t i v i t y  without overflowing the  

counter  register. 

F ina l ly  t h e  LDV v e l o c i t y  p r o f i l e s  vere cunpared with t h e  hotwire 

a#easureo;ar:&. Also t h e  v e l o c i t y  p r o f i l e s  were in tegra ted  and t h e  

in tegra ted  va lues  were checked aga ins t  t h e  m818 flowrate 

measurements. This w i l l  be discussed in the  next chapter .  

2.5.6 P a r t i c l e  Seeding. Cyclone aerosol genera tors  descr ibed by 

Glass and Kennedy (19’17) were used to  6uspend alwnina (A$%) 

p a r t i c l e s  A i r  forced t h r u  a n o t t l e ,  

mounted t angen t i a l ly  t o  a p l ex ig l a s s  cy l inder ,  swir led t h e  a i r  and 

entrained the  a l m i n e  p a r t i c l e s  a t  the  bottom. The p a r t i c l e  laden a i r  

was drawn ou t  the  to,.. Two genera tors  were mounted i n  p a r a l l e l  and 

the i r  exhaust l i n e s  were connected t o  a manifold. The manifold 

in jec ted  the seeded a i r  downstream of the  t-a sonic a i r  nozzles 

(Figure 2.17b). To minimize contamination of  the quar tz  Windows, t he  

alumina p a r t i c l e s  were in jec ted  i n t o  t h e  a i r  flow only during t h e  

acqu i s i t i on  of t h e  LDV velocity-time record.  A three-way solenoid 

valve d i rec ted  the  seeder secondary a i r  e i t h e r  through the  seeders  or 

a bypass so t h a t  t he  t o t a l  a i r  f lowrate  was constant  a t  a l l  times 

(Figure 2.17s). 

i n t o  the  flow (See Figure 2.16). 

The alumina p a r t i c l e s  ( 0 . 0 5  micron d i a . ,  P = 3.7 x 10’ R g / H  , 

Linde Div.,  Union Carbide) were d r i ed  at 500 It f o r  e igh t  hours before  

each experiment t o  l i m i t  p a r t i c l e  agglomeration. The en t r a in ing  a i r  
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was ah0 dried to  praoant add i t iona l  water abrorptim. The S. lb  

d x o n  f r i n g e  #pacing prohibi ted particles over 1.5 micron8 frar 

generat ing a Doppler frequency. IQeasurcnnte by Glare ami Kennedy 

(1977) i n d i c a t e  t h a t  particle a g g l a e r a t i o n  occur8 increuim the 

average particle diameter by about a f a c t o r  of 3. Thio vould indicate 

an average particle diameter of aboue 0.2 micron6 -8 Oaa 

could s a f e l y  aoome t h a t  t h e  particle dimeter was below 1 micron. 

produced. 

2.5.7 Sources o f  Error. Srrore i n  t h e  LDV mieasurement cm r e s u l t  

from any of  the  d i f f e r e n t  f a c e t s  of t h e  measurement 6ystan: o p t i c a l  

alignments s igna l  processing, gas medim, and seed particles. 

-- 

Processor errors. A coramon source of error i n  frequency 

measurement is Doppler ambiguity broadening or t r a n s i t  ti# broadening 

(George and Lumley, 1973). The p rec i s ion  which t h e  frequency of a 

waveform of f i n i t e  length can be measured is limited. For a processor 

working i n  frequency spaces a wave form t4 c y l e s  long is e f f e c t i v e l y  

Fourier  transformed and the r e l a t i v e  width is of order  l / N .  This  type 

of broadening was avoided by using a period counter which works i n  t h e  

t i m e  domain (Se l f  and Whitelaw, 1976). The waveform of an individual  

bu r s t  can be rimed t o  a precis ion only l imited by t h e  clock 

r e so lu t ion .  As discussed e a r l i e r  (Sect ion 2.S.3) t h i s  r e r u l t s  in  a 

0.2% uncertainty.  

Optical  errors. Besides t h e  frequency measurement, t h e  error i n  

the  ve loc i ty  is  dependent on t h e  unce r t a in ty  i n  the  bean c r o r s i n g  

angle ,  8 , the  laser wavelength, , and t h e  Br-g c e l l  s h i f t , v o ,  

(Equations 2 .1  and 2.6). The single sample unce r t a in ty  for the  

v e l o c i t y  measurement was estimated t o  be 0.42. 

Fringe p rad ien t  broadening. Additional broadening i n  the  Doppler 



s i g t i l  can r e s u l t  from curved fringes in t h e  foca l  vol\rc. h o e r  

l i g h t  propagates as Gaussian bema  md t h e  miatam waioto o f  t h e  beas 

may aot be at same pos i t i on  as t h e  i n t e r s e c t i o n  point  of t h e  beams 

(Durst and Stevenson, 1977, Ramon, 1973). I f  t h e  waist6 of t h e  beas 

are not at t h e  i n t e r s e c t i o n  poiut ,  t he  f r i n g e s  w i l l  be curved, t h e  

f r i n g e  spacing, df , W i l l  not be constant ,  and broadening of t h e  

Doppler s igna l  w i l l  occur. The broadening w a s  estimated to be 0.1% 

and w i l l  add to the rms turbulence.  This  apparent turbulence w i l l  

only be important i n  the  f r e e  stream above t h e  layer. The gradient  i n  

t he  f r i n g e  spacing is too small to  produce any d i s c e r n i b l e  error in 

t he  mean v e l o c i t y  measurement. 

Velocity gradient  broadening. Gradient broadeniag due to  v e l o c i t y  

g rad ien t s  i n  t h e  f i n i t e  s ized focal  volume can r e s u l t  i n  errors i n  t h e  

c a l c u l a t i o n  of t he  mean and nus v e l o c i t i e s .  For individual  

r e a l i z a t i o n s .  Kreid ( 1 9 7 4 )  approximated the  error i n  t h e  mean v e l o c i t y  

t o *  

2.11 

where G is  the measured mean, ua is the  ac tua l  mean, and b,, is the  

probe The g rad ien t s  u' 

snd u" a r e  evaluated with respect  t o  p i n  t he  cen te r  of t he  probe 

volume. 

v o l m c  diameter i n  the  gradient  d i r e c t i o n ,  y. 

For t h e  streamwise v e l o c i t y ,  a t  an9 given d i s t ance  downatream of 

the  step,  t h e  maximtan gradient  w i l l  occur i n  t h e  cen te r  of t he  shear  

l aye r .  The v e l o c i t y  v a r i a t i o n  is  l i n e a r  and only the  recond tern of 

equation 2.11 w i l l  be iqpor t an t .  The most severe g rad ien t s  are near 
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t h e  edge of the rtep m d  are maxhised  at t h e  highart ialet v e l o c i t y  

(a0 = 22 W e ) .  

For axarp le ,  d e n  Po = 22 H/r a t  0.5 r t e p  height6 dovnr t r em,  t h e  

ruh- gradien t  i n  t h e  layer war 1.3 x lo'/@. The probe rol- b u  a 

d i m e t e r  o f  96 microns io t h e  d i r e c t i o n  of the gradien t .  A mean 

v e l o c i t y  of 10 t¶/r w i l l  be 0.4% i n  error. The grad ien t s  d m r t r s r  of 

t b i r  regioa tiere much lerr. A t  one r t e p  height d o m r t r e r ,  a gradient 

of 4.5 x 103/r war typical. which g ives  a 0.05% error at a l o c a l  

v e l o c i t y  of 10 W e .  

Curvature e f f e c t s  are important at t h e  edge of the rhear  layer .  

The strongest curva ture  will be a t  t b e  edge of t b e  boundary layer at 

separa t ion .  The maximlrm e f f e c t  of t h e  f i r s t  t t xm of Eqn. 2.11 can be 

est imated there .  The boundary l a y e r  p r o f i l e  is laminar (See Sec t ion  

3.1). From a Blasius  f i t  of the boundary l aye r  a t  t h e  h ighes t  Reynolds 

nrraber (ReH = 3.7 x lo4, Uo - 22.2 H/e, u, = 20 n/s) t b e  raxhm 

curva ture  is -4.6 x lo' /(?Is) where u' = 1.8 x lo4  /r. This  W i l l  

produce a 0.1% error i n  t he  mean v e l o c i t y  for t h e  worst case. 

The nas turbulence w i l l  a l s o  be a f f ec t ed  by g rad ien t  broadening. 

Following Durst et  el (19761,  one assmes t h a t  t h e  v a r i a t i o n  of t h e  

v e l o c i t y  i n  the  probe v o l m e  can be expanded i n t o  a Taylor series. 

Since t h e  l a s e r  beam has a Gaussian i n t e n s i t y  p r o f i l e ,  t h e  v e l o c i t y  

v a r i a t i o n  i e  weighted by a Gaussian p r o b a b i l i t y  funct ion.  The m s  

turbulence is then, 

4 4 
1 2 , 2  xb.. u -+ a b y  u 3 4 112 + . . .] - [  ' 2 (u  - u,) 2.12 

The curva ture  term is  me11 throughout t he  flow f i e l d .  However, t he  
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first term i n  Eqn. 2.12 i m  important i n  t h e  boundary layer a t  

sepa ra t ion  and in  t h e  rhear  layer. Tht gradient  broadening vas 

sub t r ac t ed  in t h e  boundary layer by c a l c u l a t i n g  u' from t h e  'li-uelocity 

da t a .  A polynomial f i t  o f  t h r e e  neighboring v e l o c i t y  p o i n t s  -8 used 

t o  determine t h e  gradient .  The paximum gradient  broadening in t h e  

boundary l a y e r  ranged from u=/Uo - 0.04 t o  0.01 f o r  the three 

Reynolds n m b e r s  s tudied.  This mounted to  about h a l f  of the 

turbulence measured i n  t h e  boundary layer. 

Calculat ing u' d i r e c t l y  from the  d a t a  added noise  to  t h e  

turbulence i n t e n s i t y  measurements. Therefore i n  t h e  shear layer, t h e  

u-velocity d a t a  was f i t  with an e r r o r  funct ion by a least squares f i t  

rou t ine .  The gradient  was ca l cu la t ed  from the  e r r o r  funct ion f i t  and 

t h e  broadening was removed. The maximum c o r r e c t i o n  i n  the  shear layer 

was about umS/Uo = 0.03, 0.02, 0.005 for x/H = 0.5, 1, 2, 

r e spec t ive ly .  

- 

The skewness and f l a t n e s s  f a c t o r s  which are the  t h i r d  and fourth 

moments of the  v e l o c i t y  PDF were a l s o  determined i n  the shear l aye r .  

Gradient broadening W i l l  a l s o  e f f e c t  t h e i r  evaluat ion.  Again 

expanding the  v e l o c i t y  i n  t h e  probe volrrme i n t o  a Taylor series and 

averaging over a Gaussian p robab i l i t y  one f i n d s  t h e  skewness 

broadening is  given by, 

2.13 

and the  f l a t n e s s  broadening is given by, 
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Both terms i n  t h e  skewness broadening were found to  be negl igable .  

The f i r s t  term i n  t h e  f l a t n e s s  broadening is not  neg l ig ib l e .  E o w e w G r  

i f  one normalizes t h e  f l a t n e s s  f a c t o r  by t h e  uncorrected raw 

turbulence,  t h e  broadening due to  t h e  f i r s t  term is removed. The rest 

of t he  terms i n  the  f l a t n e s s  broadening are i n s i g n i f i c a n t .  

Veloci ty  b ias ing .  In  turbulen t  flows, &laughl ip  and Tiederman 

(1973) recognized t h a t  t h e  mean and rms v e l o c i t y  averages Vi11 

be biased because a t  higher  v e l o c i t i e s  more f l u i d  and hence more 

p a r t i c l e s  are convected through t h e  foca l  volrrme than a t  lower 

v e l o c i t i e s .  T h e  eve ge computations proposed by Dimotabis (1976) t o  

circumvent t he  McLaughlin-Tiedennan b i a s  i n  high d a t a  rate regions has 

been presented i n  Sect ion 2 . 5 . 4 .  The time weighted averages a r e  

c o r r e c t  for regions where t h e  d a t a  r a t e  is  high. In  t h e  l o w  d a t a  r a t e  

regions where time averages a r e  no longer v a l i d ,  simultaneous 

measurements of a t  l e a s t  two and sometimes t h r e e  components of t he  

v e l o c i t y  must be made t o  properly c o r r e c t  for the  b ias ing  ( D h o t a k i s ,  

1976). A r i n g l e  component LDV system was employed, p roh ib i t i ng  t h i s  

type of cor rec t ion .  In the  low d a t a  r a t e  reg ions ,  t h e  nrnnerical 

averages (Equations 2.7 and 1.8) were reported without co r rec t ions .  

f i r s t  

Bragg c e l l  b i a s ing .  Veloci ty  b i a s ing  i s  a l s o  caused by frequency 

mhifting. f r inges  move a t  a constant  v e l o c i t y  and t h e  a m b e r  of 

r e a l i z a t i o n s  per p a r t i c l e  w i l l  depend on the  v e l o c i t y  of t he  p a r t i c l e  

(Meyere and Clemons,  1979). In the  limit, a s t a t i o n a r y  p a r t i c l e  i n  

the  foca l  vollnne w i l l  produce an i n f i n i t e  number of r e a l i z a t i o n s .  

The 
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This v e l o c i t y  bicaing e f f e c t  w i l l  rerve to  cancel t h e  

McLaughlin-Tiederman biar. The importance of v e l o c i t y  b i a r i n g  in t h e  

low d a t a  rate regions can be p a r t i a l l y  checked by examing t h e  8gPPmetx-y 

of t h e  v e l o c i t y  PDF8 which were atored at each measurement locat ion.  

P a r t i c l e  Considerations.  The a b i l i t y  of t h e  p a r t i c l e a  to f o l l o v  

t h e  f l o v  is an important considerat ion.  The upper limit on t h e  

p a r t i c l e  si te is determined bv t h e  p a r t i c l e  i n e r t i a  and the  lower 

l i m i t  by Brownian motion, molecular s l i p ,  and t h e  p a r t i c l e  s c a t t e r i n g  

c ros s  sec t ion .  The p a r t i c l e  concentrat ion must not be t oo  high t o  

a f f e c t  t he  flow. Also t h e  s i z e  d i s t r i b u t i o n  must be narrow s i n c e  t h e  

v e l o c i t y  l ag  is  dependent on the  p a r t i c l e  s i z e .  

The cyclone p a r t i c l e  generators  using 0.05 micron alumina 

p a r t i c l e s  produced a p a r t i c l e  diameter of about 0.2 microns (See 

Section 2.5.6). Mazmder and KirPch (1975) set the  lower l i m i t  of 

p a r t i c l e  diameter determined by molecular s l i p  a t  0.1 microns. 

Brownian motion need only be considered f o r  very low v e l o c i t y  (<O.OS - 
H/s) laminar flows (Durst et e l ,  1976). The p a r t i c l e s  were l a rge  

enough t o  produce d a t a  r a t e s  up t o  10 kHz i n  t h e  f r e e  stream. Thus 

t h e  p a r t i c l e  s i z e  was not too small. 

The p a r t i c l e  concentration was about 1 x 10’’ /PI3 i n  t h e  f r e e  

stream. This r ep resen t s  an average sepa ra t ion  dietance of 2000 

diameters for  0.2 micron p a r t i c l e s ,  causing a n e g l i g i b l e  e f f e c t  on t h e  

flow. 

The upper l i m i t  on the p a r t i c l e  s i z e  is determined by t h e  

required frequency response The p a r t i c l e s  need t o  follow flow 

o s c i l l a t i o n s  i n  t h e  LaCrangjan (moving) frame r a t h e r  than the Eulerl8n 

( l abora to ry )  frame which relaxes the  s i t e  l i m i t a t i o n s  conriderably.  
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Using t h e  p a r t i c l e  flow r o l u t i o n  by Bjelmfel t  and Wckros  (19661, 

Durat e t  e l  (1976) ca l cu la t ed  t h e  frequency response f o r  va r ious  types 

of p a r t i c l e s  i n  both a i r  flows and f l a e s .  Their  c a l c u l a t i o n s  

i n d i c r t e  t h a t  alumina p a r t i c l e s  0.4 microns i n  diameter Will follow 

f l o w  o e c i l l a t i o n s  ( i n  the  Bulerian frsme) up t o  10 kRt 6 t h  1% 

v e l o c i t y  lag i n  room temperature air  flows. P a r t i c l e r  of 0.8 micron 

s i te  w i l l  provide the  same performance i n  f l m e s .  Thus 0.2 micron 

p a r t i c l e s  used he re  O r i l l  have a frequency response i n  exceas of 10 

kHz . 
The s i z e  d i s t r i b u t i o n  of t he  altmina p a r t i c l e s  was not measured. 

The boundaries of t h e  p a r t i c l e  si te PDF were determined by tbe i n i t i a l  

p a r t i c l e  sire (0 .05  micron) and the  f r i n g e  spacing (3.1 micron). Thus 

r e a l i z a t i o n s  could only occur f r m  p a r t i c l e s  ranging from 0.05 t o  1.5 

microns. Maeumder and Kirsch (1975) noted t h a t  t he  v e l o c i t y  lag 

v a r i e s  with the s i z e  d i s t r i b u t i o n  and a wide d i s t r i b u t i o n  of p a r t i c l e s  

might broaden the  Doppler frequency. This may occur f o r  highly 

acce le ra t ing  flows with low turbulence l e v e l s .  The flow f i e l d  behind 

t h e  rearward-facing s t e p  had turbulence l e v e l s  exceeding 4% everythere  

and The l a rge  

p a r t i c l e  v e l o c i t y  lag was a t  most ?% and would tend t o  narrow the  

Doppler spectrum due t o  t h e  low frequency responae of t h e  l a r g e r  

p a r t i c l e s .  t h e  

turbulence l eve l  shown i n  Figure 2.15. AB t he  threshold r e t t i n g  i s  

increased,  only the l a rge r  p a r t i c l e s  are v a l i d a t e d ,  and the  turbulence 

l eve l  decreases .  

turbulence l e v e l s  g r e a t e r  than 50% i n  t he  shear ?ape+. 

This is c l e a r  from the  e f f e c t  of threshold s e t t i n g  on 

Combustion e f f e c t s .  Use of LDV i n  a combusting medim generates  

new sources of imprecision. Temperature and concentrat ion v a r i a t i o n s  
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lead t o  index of r e f r a c t i o n  v a r i a t i o n s  t h a t  cause movement and 

d i spe r s ion  of the  laser l i g h t .  "he probe v o l m e  pos i t i on  f l u c t u a t e s  

and the  beams may be de f l ec t ed  such t h a t  they no longer c ros s .  

Propagation of the Gaussian beams through the  index of r e f r a c t i o n  

inhomogeneities increases  the  waist diameter,  d i s t o r t s  t he  f r i n g e s ,  

and broadens the  Doppler s i g n a l .  These problems and o t h e r s  associated 

w i t ' l  combustion systems have been discussed by Self  and Whitelaw 

(2976) and to  some extent  by D u r s t  et e l  (1976). 

Beam d e f l e c t i o n s  and the ensuing beam umross ings  did not appear 

t o  be a problem i n  the  two-dimensional combustor. 7'he d a t a  rates f o r  

isothermal and r e a c t i v e  flows were e s s e n t i a l l y  the  same. The l i g h t  

d e f l e c t i o n s  i n  t he  s c h l i e r e n  system (Figure 2.6) i n d i c a t e  t h a t  bean 

d e f l e c t i o n s  of the  order  of 0.2 mm could have taken place i n  t h e  

burning shear l r y e r .  Deflections of t h i s  magnitude would c e r t a i n l y  

r e e u l t  i n  sowe s igna l  dropout. However, t he  p r o b a b i l i t y  of such beam 

uncrossings m s t  be small because no s i g n i f i c a n t  s igna l  l o s s  wae 

recorded. 

Durst  and Kleine (1973) reported v e l o c i t y  b i a s ing  due t o  p a r t i c l e  

d e n s i t y  v a r i a t i o n s  i n  cmbus t ing  flows. The high temperature, low 

dens i ty  regions contain lower p a r t i c l e  d e n s i t i e s  than the unburned 

regiona. Uncorrected averages w i l l  be biased toward the  v e l o c i t y  i n  

the  cooler  turbulent  eddies.  A t  high d a t a  r a t e s  t h i s  b i a s  was 

corrected by etorage of the  velocity-time record and time averaging 

(Equation 2.9 and 2.10). A t  low d a t a  rates,  t h i s  b i a s ing  added 

add i t iona l  uncertainty t o  the  nrnnerical averages (Equations 2.7 and 

2 . 8 ) .  

Duret and K l e i n e  (1973) a l s o  studied the  e f f e c t  of metal  oxide 
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particles  on the flame ve loc i ty .  in  

the flame velocity in  a premixed, s to ichimetr ic ,  natural gas flame 

when using MgO particles  at a concentration of 2 x 10 /M'. Thus the 

alunina particles  used i n  t h i s  experiment at a maximum concentration 

of  1 x 1s'' /$ had no influence on the combustion process. 

They found no significant change 

10 
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Input 
Computer 
Terminal 

Desired 
Cond i t ions 

Output 
Sett ings 

Output 
Coadit ions 

Table 2.1 Combaster Data Record 

(TA,PA) 
(TT,PT) 
(TF,PF) 

(TS ,PS ,YS) LDV seeder rotometrr temperature, pressure, 

Adient air temperature md presaute 
Test section temperature and pressure 
h e 1  rotoreter teqerature and prerrure 
transducer retting I and displacesent 
Main air nozzle temperatures and dimeters 

Reference veloc it y 
Equivalence rat io 

Main air nozzle transducer settings 
Fuel rotometer displacement 

Main air mass flow rate 
Total air mass flow rate 
Fuel mass flow rate 

Table 2 . 2  Schlieren Optics Specifications 

81 92 
(deg) (deg) 

Camera Test section x1 X2=f1 
view (mm) hull) 

- -  
Movie Full 220 120 3.2  3.8 
Movie Enlargsd 285 254 3 .2  3.8 
Movie Super enlarged 165 365 3.2 3.8 
Still Full 120 1000 3 .2  3 . 7  



Table 2 .3  LDV Data Record 

Computer 
A C C e O 8 :  

Para1 le1 
Line 
Interface 

Computer 
Terminal 

Parallel 
Line 
Interface 

Burst counter range (6-7) 
arator rettiag (518) [- Comparator accuracy (2)  

ecord length (2048) 
Ringe .pacing (3.114 microne) 
Brags ce l l  mhift (0.01 - 10 Nhs) 
Probe location (X,Y,t) 

urst period Data Period -- --- 
_. - --- - 

(x 2048 po int~ )  
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Figure 2 . 7  Hot wire c a l i b r a t i o n  curve. 
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splittor 

Figure 2 . 8  Typical LDV dual beam optics.  
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Figure 2 . 1 4  LDV noise r e j e c t i o n  - Macrodyne counter threshold 
se t t ing  ca l  i bra t I on. 
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Figure 2 . 1 5  Var ia t ion  of turbulence i n t e n s i t )  and data r a t e  
w i t h  i4acrodyne threshold s e t t i n g .  
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Figure 2.16 LDV cyclone particle seeders. 
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Figure  2.17b LDV seeder l a y o u t .  
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Chapter 3 

RESULTS AXD DISCUSSION 

Three Reynolds number c o n d i t i o n s  (Rea = 1.5 x l o b ,  2.2 x !Ob, 

3 . 1  x 10') are r t u d i e d  f o r  both r e a c t i n g  and non-reacting flow. The 

s t e p  he igh t  is f i x e d  a t  25 um. In t h e  reacting flow premixed 

propane-air  is burned a t  an equivalence r a t i o  of 0.57 .  The Reynolds 

number l i m i t s  are determined by t h e  s t a b l e  burning modes of  t h e  

combustor. A l l  t h e  i n l e t  c o n d i t i o n s  are a t  room temperature .  

Complete p r o f i l e s  of  t h e  mean and rms averages of  t h e  u-veloci ty  

component are recorded for each flow c o n d i t i o n .  The v e l o c i t y  PDF i s  

s t o r e d  a t  most l o c a t i o n s .  The r e a c t i n g  flows are v i s u a l i z e d  wi th  h igh  

speed s c h l i e r e n  photography. Measurement 6 of t h e  v -ve loc i ty  component 

are made for  one Reynolds number (R% = 2 . 2  x lo ') .  F i n a l l y ,  t h e  

frequency s p e c t r a  of t h e  v-component v e l o c i t y  a r e  obtained t o  assess 

t h e  l o c a l  l a r g e  s c a l e  s t r u c t u r e  pas s iqg  frequency a t  t w o  i n l e t  

Reynolds numbers ( R %  - 1.5  x lo',  2 . 2  x 10'). 

3 . 1  I n i t i a l  Co;iditions 

The s ta te  of  t he  e n t r y  flow can have s u b s t a n t i a l  e f f e c t s  on t h e  

behavior  of mixing l a y e r s  and r e a t t a c h i n g  flows. The c o n d i t i o n  of  t h e  

boundary l a y e r  a t  s e p a r a t i o n  can a f f e c t  t h e  shea r  l a y e r ' s  v i r t u a l  

o r i g i n ,  i n i t i a l  breakdown, growth ra te ,  reat tachment  p o i n t ,  and 

tu rbu lence  development (see Bradshaw, 1966, Browand and La t igo ,  1978, 

Ba t t ,  1975, and Eaton,  1983e). Other v a r i a b l e s  such as t es t  s e c t i o n  

geometry (Dimotakie and Brown, 19761, and f r e e  stream tu rbu lence  

(Chandrsuda e t  e l ,  1978) can a l s o  be important .  In  rearward-facing 

s t e p  flows, t h e  major s c a l i n g  parameters a s sebs ing  rhe s t a t e  of t h e  



boundary layer  are the mmentum thickness  Reynolds number, &e/u, t he  

boundary layer  thickness ,  &/a ,  and possibly the shape f a c t o r ,  

H~~ - & / e .  Here 6 i s  the  992 bcundary layer  thickness.  The 

displacement and momentum thicknesses  are 6 and e, respec t ive ly .  

* 

* 

Birch (1977, 1980) suggests t ha t  the  plane mixing layer  flow 

becomes independent of t he  i n i t i a l  condizions a t  very high Reynolds 

number (Re > 2 x l o 6 ) .  Host inves t iga t ions  in mixing l aye r s  and 

backward-facing s t e p  flows are well below t h i s  value and i n i t i a l  

condi t ions are important. The e f f e c t  of the s t a t e  of the  boundary 

layer (laminar or tu rbulen t )  on the shear layer  growth and development 

fo r  Re < L x l o 6  is s t i l l  not well understood. B a t t  (1975) and 

Wygnanski and Fie lder  (1970) report an increase i n  the growth rate 

when the  boundary layer  i s  t r ipped and Browand and Latigo (197P) 

report  a decrease.  In t h i s  study the  maximum "eynoldc number, R e x ,  

before curvature e f f e c t s  become la rge  is  2 x l o5  making the 

documentation of the i n i t i a l  condi t ions important. 

The en t ry  ve loc i ty  p r o f i l e s  on the  c e n t e r l i n e  for  the  three  

Reynolds numbers s tudied a re  shown i n  Figures 3.1,  3.2, and 3.3. These 

a r e  numerical averages of the ve loc i ty .  The t i m e  in tegra ted  averages 

a re  iden t i ca l  except near the s t e p  v a l l  where the da t a  r a t e s  a re  too 

low for  the time averages t o  be meaningful. The i n l e t  ve loc i ty  i s  f l a t  

t o  + 52 of the average freestream ve loc i ty .  The va r i a t ions  i n  the 

mean ve loc i ty  a re  due t o  the small cont rac t ioa  r a t i o  (2:l) and 

nonuniformities i n  the a t e e l  woo1 packing. In tegra t ion  of the  

cen te r l ine  p r o f i l e s  y i e lds  mass f lowrates  t h a t  a r e  2% - 3% lover  than 

the  f l o w e t e r  measurements. The f ree  stream turbulence l eve l s  a r e  

about 2 %  for  isothermal flow and 3% for  reac t ing  flow. The noise  leve l  

- 
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f o r  t h e  tu rbu lence  i n t e n s i t y  measurements i n  t h e  r e a c t i n g  flow i s  

h i g h e r .  

Hot w i r e  anemometry measurements of  t h e  e n t r y  v e l o c i t y  p r o f i l e  

&re made t o  check t h e  LDV o p e r a t i o n .  Ve loc i ty  p r o f i l e s  f o r  

non-reacting flow measured by both t echn iques  are shown i n  F igu re  

3.4. The agreement between t h e  measurements f o r  t h e  t h r e e  e n t r a n c e  

Reynolds numbers v a r i e s  from 0.3% t o  2%. This is w i t h i n  t h e  accuracy 

of t h e  measurements which is 1.5% f o r  ho t  w i r e  and 0.4% f o r  t h e  LDV 

(see Chapter 2 ) .  

The boundary l a y e r  f o r  t h e  low Reynolds number case i s  p l o t t e d  

a g a i n s t  t h e  B l a u s i s  p r o f i l e  for 6 = 0 and 0.57 i n  Figure 3.5.  The mean 

v e l o c i t i e s  f c l low t h e  B l a s i u s  p r o f i l e  and t h e  shape f a c t o r  of t h e  

p r o f i l e s  is  t h e  B l a s i u s  v a l u e  (H12 = 2 . 6 ) .  The tu rbu lence  l e v e l s  are 

c o r r e c t e d  f o r  g r a d i e n t  broadening (see S e c t i o n  2 . 5 . 7 )  which is  

s i g n i f i c a n t  i n  t h e  boundary l a y e r .  The c o i r e c t i o n  i s  p r o p o r t i o n a l  t o  

t h e  v e l o c i t y  g rad ien t  (Eqn. 2.12) which i s  not a smooth va ry ing  

func t ion  and t h e  n o i s e  l e v e l  of u,-,,~ i s  inc reased .  The tu rbu lence  

l e v e l  i s  high i n  t h e  boundary layer  ( - 4 % )  but  f l a t .  The h e a t  t r a n s f e r  

back t o  the  s t e p  i n  t h e  r e a c t i n g  flows d i d  not a l te r  t h e  boundary 

l a y e r  s i g n i f i c a n t l y .  The medium and high Reynolds number flows a r e  

shown i n  F igu res  3.6 and 3.7. The medium and high Reynolds number 

v e l o c i t y  p r o f i l e s  d e p a r t  from t h e  B l a s i u s  v a l u e s  but  t h e  shape f a c t o r s  

of 2 . 5  and 2.4 a r e  s t i l l  much l a r g e r  than t h e  t u r b u l e n t  va lue  cf 1 . 3 .  

The tu rbu lence  l e v e l s  i n c r e a s e  i n  t h e  ' w n d a r y  layer f o r  t h e  h ighe r  

Reynalds number flows. 

The boundary l a y e r  parame:ers a r e  summarized i n  Table  3 . 1  f o r  a l l  

t h e  r u n  c o n d i t i o n s .  The in f luence  of  combustion on t h e  boundary l a y e r  
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s ta te  i s  minimal. Under a l l  c o n d i t i o n s  t h e  tu rbu lence  l e v e l s  i n  t h e  

boundary l a y e r  are high (4 - 8%) y e t  t h e  v e l o c i t y  p r o f i l e s  are 

b a s i c a l l y  laminar.  Th i s  boundary l a y e r  state is o i m i l a r  t o  t h e  

t r i p p e d  He used a wire t r i p  producing 

high tu rbu lence  l e v e l s  w i th  a B l a s i u s  p r o f i l e .  Here imper fec t ions  i n  

t h e  p r o f i l e d  s t e p  (p robab ly  a t  t h e  l ead ing  edge) might have t r i p p e d  

t h e  boundary l a y e r .  The momentum t h i c k n e s s  Reynolds numbers are 

around t h e  c r i t i c a l  va lue  o f  160 but  are vel1 below t h e  t r a n s i t i o n a l  

v a l u e  of  390. The boundary layer never becomes f u l l y  t u r b u l e n t .  The 

c o n d i t i o n  of t h e  boundary l a y e r  f o r  a l l  t h r e e  Reynolds numbers is  b e s t  

desc r ibed  as " t r a n s i t i o n a l " .  

l a y e r  r e p o r t e d  by Batt (1975).  

The i n i t i a l  boundary l a y e r  state can a l s o  have important e f f e c t s  

on t h e  s t a b i l i z a t i o n  of t h e  r e a c t i n g  s h e a r  l a y e r .  Figure 3.8 shows an 

enlargement of t h e  mixing l a y e r s  f o r  t h e  r e a c t i n g  flows. The da rk  

o b j e c t  p ro t rud ing  from t h e  t o p  i s  t h e  i g n i t o r .  The s c h l i e r e n  

s e n s i t i v i t y  is  minimized i n  Figure 3.8b so t h a t  on ly  t h e  flame i s  

shown. The flame s t a b i l i z e s  i n  t h e  boundary l a y e r  j u s t  be fo re  

s e p a r a t i m .  Wit!, t oo  l a r g e  a boundary l a y e r  t h e  f l m e  could propagate  

upstrt-clm c . ; u s i n ~  f l a shback .  A t  low flow rates (ReH < 1.5  x 10') t h e  

i g n i t i o n  po in t  sf t h e  flame is  found t o  wander i n  t h e  boundary layer 

causing a low frequency f l app ing  of t h e  r e a c t i n g  l a y e r .  As t h e  

boundary l a y e r  becomes t h i n n e r ,  t h e  i g n i t i o n  po in t  of  t h e  flame must 

move downstream, and t h e  f l a r e  could d e s t a b i l i z e  and blow o f f .  

Hot wire s p e c t r a  of t h c  m e  strecanwise v e l o c i t y  component i n  t h e  

e n t r y  region were taken f o r  t h e  non-reacting flow. In  t h e  s tudy  by 

Can j i  and Sawyer (1980) ,  t h e  premix s e c t i o n  had no packing o r  

s c r e e n s .  The ho: wire s p e c t r a  r evea led  many resonant  peaks from 
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a c o u s t i c  vavem i n  t h e  tunne l  (Bee F igure  3.9). Theee "tuned" f low 

o e c i l l a t i o n e  could trigger i n e t a b i l i t i e e  i n  t h e  s h e a r  l a y e r .  

I n s t a l l a t i o n  of s c r e e n s  and packing i n  t h e  premix s e c t i o n  (Chapter 2)  

e l i m i n a t e d  t h i s  reeonant  t u rbu lence .  The h o t  wire s p e c t r a  i n  t h e  

e n t r a n c e  flow f o r  t h i e  s tudy  is given i n  F igu re  3.10. The s p e c t r a  is 

emooth and void of a c o u s t i c  resonances.  AB w i l l  be  eeen la ter ,  under 

combustion t h e  LDV m e  v e l o c i t y  s p e c t r a  e x h i b i t  erne resonant  peaks 

due t o  a c o u s t i c  waves i n  t h e  t es t  s e c t i o n .  It w i l l  be ahown t h a t  t hey  

are not of  s u f f i c i e n t  magnitude t o  a f f e c t  t h e  l a y e r .  

3.2 Shear Layer Development 

The rearward-facing s t e p  flow develops i n i t i a l l y  v e r y  much l i k e  a 

f r e e  shea r  l a y e r  with ze ro  v e l o c i t y  on one a i d e  ( h a l f  je t  mixing 

layer) .  Before curvaLure e f f e c t s  become l a r g e  ( 6 J R  << 1 , where R is 

&he r a d i u s  of c u r v a t u r e  of t h e  d i v i d i n g  s t r e a m l i n e )  t h e  growth ra te  

and v e l o c i t y  p r o f i l e s  are similar t o  t h e  h a l f  j e t  (Eaton and Johnston,  

1980a).  Unlike t h e  h a l f  j e t  f lows,  t h e  upper v e l o c i t y ,  U1, does v a r y  

s l i g h t l y  with x and more impor t an t ly  t h e  v e l o c i t y  i n  t h e  r e c i r c u l a t i o n  

zone is not zero.  Since t h e  mixing l a y e r  growth r a t e s  are dependent 

on t h e  v e l o c i t y  d i f f e r e n c e  a c r o s s  t h e  l a y e r ,  one would expect  an 

e f f e c t  on t h e  growth ra te .  Turbulence l e v e l s  i n  t h e  r e c i r c u l a t i o n  zone 

a r e  a l s o  much higher  than t h e  h a l f  j e t  mixing l a y e r .  The i n f l u e n c e  of 

t h e s e  h ighe r  t u rbu lence  l e v e l s  i n  t h e  r e c i r c u l a t i o n  zone on t h e  

tu rbu lence  development of t h e  mixing l a y e r  are not  well understood 

(Eaton and Johns ton ,  1980a).  

As t he  l a y e r  cont inueb t o  grow, c u r v a t u r e  e f f e c t s  become l a r g e  

and t h e  analogv t o  a mixing l e y e r  no longer  a p p l i e s .  The l a y e r  cu rves  

down toward t h e  well end e v e n t u a l l y  impinges on t h e  wa l l  a t  t h e  
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reat tachment  p o i n t .  The r h e a r  l a y e r  behind a r e a r w r d - f c c i n g  e t e p  i e  

o f t e n  c a l l e d  a " r ea t t ach ing"  r h e a r  l a y e r .  The r e c i r c u l a t i o n  zone e k e  

depends t o  a g r e a t  e x t e n t  on t h e  ra te  of growth o f  t h e  r e a t t a c h i n g  

ehea r  l a y e r  i n t o  t h e  r e c i r c u l a t i o n  tone.  The growth o t  t h e  upper 

boundary of  t h e  ehea r  l a y e r  w i l l  determine t h e  rate of entrainment  of 

f r e s h  f l u i d  i n t o  t h e  l a y e r .  

As i n  mixing l a y e r s ,  t h e  t u r b u l e n t  s t r u c t u r e  of t h e  r e a t t a c h i n g  

s h e a r  layer i s  determined by t h e  ionna t ion  and development o f  l a r g e  

s c a l e  s t r u c t u r e s .  The i n i t i a l  laminar ehear  l a y e r  b reaks  down from a 

Kelvin-Helmholtz i n s t a b i l i t y  (Sherman, 1976) and t h e  l a r g e  scale 

s t r u c t u r e s  form. These l a r g e  s c a l e  s t r u c t u r e s  are p r i m a r i l y  

two-dimensional (Brown and Roshko, 1974) and grow by f l u i d  entrainment  

and coalescence (Winant and Browand, 1974).  The growth of t h e  l a r g e  

s c a l e  s t r u c t u r e s  mark  t h e  boundaries  of  t h e  r e a t t a c h i n g  shea r  l a y e r .  

The i r  growth e f f e c t s  t h e  r e c i r c u l a t i o n  zone s i z e  and t h e  r a t e  o f  

spread of t h e  upper boundary of t h e  shea r  l a y e r  i n t o  t h e  f r e e  stream. 

The turbuler.ce i n  t h e  l a y e r  r e s u l t s  from t h e  pas s ing  of  t h e s e  

two-dimenuionel s t r u c t u r e s  which c o n t a i n  a sma l l e r  s c a l e ,  

three-dimensional framework ( B r e i d e n t h a l ,  197t?, Konrad, 1976). 

In t he  r e a c t i n g  l a y e r ,  t h e  incomrng flow is  premixed r e a c t a n t s .  

The flame i s  s t a b i l i z e d  a t  t h e  edge of t h e  s t e p .  Near t h e  s t e p ,  t h e  

r e a c t a n t s  and hot products  mix i n  a laminar l a y e r  and burn,  Once t h e  

e d d i e s  form the  burning t a k e s  p l ace  i n  t h e  two-dimensional s t r u c t u r e s  

(Ganj i  and Sawyer, 1980).  The edd ies  fo ld  i n  r e a c t a n t s  and hot. 

products  as they r o l l  downstream. As we w i l l  s e e ,  t h e  hea t  c*xpansAon 

causes  t h e  shea r  l a y e r  def ined by t h e  mean v e l o c i t y  f i e l d  t o  be 

e h i f r e d  downvard and the  r e c i r c u l a t i o n  s i z e  sho r t ened .  The l a r g e  
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s c a l e  s t r u c t u r e s  r e a c t  and expand above t h e  s h e a r  l a y e r .  The d e n s i t y  

above t h e  r h e a r  l a y e r  is  lowered as t h e  upper flame boundary extende 

beyond t h e  boundary o f  t h e  ohear layer. The coa le rcence  rate of  t h e  

s t r u c t u r e s  is  also lowered by h e a t  release. These and o t h e r  e f f e c t s  

o f  r e a c t i o n  on t h e  r e a t t s c h i n g  s h e a r  l a y e r  w i l l  be d e t a i l e d  in t h e  

nex t  s e c t i o n s .  

3.3 Mean Ve loc i ty  Flow F i e l d  - -- - 
3 .3 .1  Sreamwiee V e l o c i t y  Flow F i e l d .  A t y p i c a l  stremwise 

v e l o c i t y  p r o f i l e  is  show. i n  Figure 3.11. Both t h e  numerical  and 

i n t e g r a t e d  mean v a l u e s  are p l o t t e d  along wi th  t h e  corresponding d a t a  

ra te .  Above t h e  shea r  l a y e r  t h e  d a t a  rates are f a i r l y  h igh  and t h e  two 

means are i d e n t i c a l .  I n  t h e  shea r  l a y e r  t h e r e  are some d i f f e r e n c e s  

between t h e  two means but  t h e  v a l u e s  match c l o s e l y .  Only i n  t h e  

r e c i r c u l a t i o n  zone, where t h e  d a t a  r a t e s  are t y p i c a l l y  low, a r e  

s i g n i f i c a n t  d i f f e r e n c e s  appa ren t .  C l e a r l y  t h e  t i m e  i n t e g r a t e d  v a l u e s  

a r e  suspec t  he re  s i n c e  t h e  d a t a  rates a r e  t o o  low t o  t r u l y  fo l low t h e  

f l o w .  The numerical  averages a r e  a l s o  s u b j e c t  t o  v e l o c i t y  b i a s i n g  

e r r o r s  i n  t h i s  t u r b u l e n t  r eg ion .  In  a l l  t h e  mean p r o f i l e s  t h e  on ly  

s i g n i f i c a n t  d e p a r t u r e  of  t h e  two mean v a l u e s  occur s  i n  t h e  

r e c i r c u l a t i c n  zone. Since t h e  numerical  means a r e  more a p p r o p r i a t e  

f o r  t h i s  r e g i o n ,  end t h e  two v a l u e s  a r e  t h e  same elsewhere,  a l l  t h e  

v e l o c i t y  p r o f i l e s  r epor t ed  w i l l  be numerical  averages.  

-- 

I n t e g r a t i o n  of  t h e  c e n t e r l i n e  v e l o c i t y  p r o f i l e s  i n  t h e  isothermal  

flow y i e l d  mass flow r a t e  estimates t h a t  range from 8% t o  25% below 

t h e  flowmeter measurements. Off-center  p r o f i l e  measurements i n d i c a t e  

t h a t  t h i s  f low d e f i c i t  can be a t t r i b u t e d  t o  lower r e c i r c u l a t i o n  r a t e s  

nea r  t h e  s i d e  w a l l s .  A c e n t e r l i n e  p r o f i l e  a t  x/H = 3 i s  compared t o  an 
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o f f - c e n t e r  p r o f i l e  taken halfway between t h e  val l  and c e n t e r l i n e  

(z/H = 1 .8 )  i n  Figure 3.12a. The average b u l k  v e l o c i t y  in t h e   files 

i s  20% low i n  t h e  c e n t e r l i n e  and 32 low a t  z/H = 1.8. The lower 

r e c i r c u l a t i o n  ra tes  nea r  t h e  wa l l  i n c r e a e e  t h e  average bu lk  v e l o c i t y .  

The v e l o c i t y  i n  t h e  r e c i i c u l a t i o n  zone (y;H = -0.67) f o r  t h e  eame x 

p o s i t i o n  i s  shown i n  F igu re  3.12b confirming t h a t  t h e  r e c i r c u l a t i o n  

ra tes  are lower away from t h e  c e n t e r l i n e .  A complete volume i n t e g r a l  

i nvo lv ing  s e q u e n t i a l  s cans  a c r o s s  t h e  tunne l  i s  not  made but t h e  lower 

r e c i r c u l a t i o n  r a t e  n t a r  t h e  w a l l  cau e a s i l y  account f o r  t h e  flow 

d e f i c i t  on t h e  c e n t e r l i n e .  

The a spec t  r a t i o  ( t u n n e l  width t o  s t e p  h e i g h t )  i s  6 . 9 .  According 

t o  de Brederode and Bradshaw (1972) a t  a spec t  r a t i o s  g r e a t e r  t han  10 

three-dimensional e f f e c t s  are sma l l .  Here three-dimensional e f f e c t s  

a r e  not n e g l i g i b l e ,  but as seen from Figure 3.12 t h e  flow i s  s t i l l  

predominantly two-dimensicnal. , :h l ieren p i c t u r e s  o f  t h e  r e a c t i n g  

shea r  l a y e r  (F igu res  3.8 and 3.40) a l s o  demonstrate  t h e  

Cwo-dimensionality of t h e  flow. 

The c e n t e r l i n e  streamwise v e l o c i t y  p r o f i l e s  of  t h e  r e a c t i n g  and 

non-react ing flow a t  t h e  t h r e e  e n t r a n c e  Reynolds numbers s tud ied  are 

shown i n  F igu res  3.13 through 3.15. The dashed l i n e  s h o w  i n  t h e  

r e a c t i n g  flow i n d i c a t e s  t he  upper edge of  t h e  flame boundary measured 

from long exposure s c h l i e r e n  photographs such as Figure 3.44. The 

flame boundary is  well above t h e  shea r  layer  given by t h e  mean 

v e l o c i t y  p r o f i l e s .  

For t he  non-react ing flow t h e  p o s i t i o n  of t h e  ze ro  s t r eaml ine  i p  

determined from the  c e n t e r l i n e  p r o f i l e  by i n t e g r a t i n g  from t h e  top  

w a l l .  The r e s u l t s  i n d i c a t e  t h a t  c u r v a t u r e  e f f e c t s  do not become 
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important until x/H = 4 or x /x  = 0.6, where xI is the reattacl.*.ec, 

length. This is consistent n t h  the results of Eatoa a d  Johnston 

(1980a). The three-dimensional effects are too etrong to give accurate 

quantitive data of the zero srreamline position. 

R 

The maximmi reverse veloci&y at each x position in the 

recirculation zone for the non-reacting flow is given in Figure 

3.16a. The maximum reverse velocity is 0.33Uo which is higher than 

reported by other reseerchers. A review of backward-facing step flows 

by Eaton and Johnston (1980b) reports a typical reverse kelocity of 

0.25Uo. The higher value is probably due t~ the low aspect ratio of 

this flow. As seen in Figurr 3.11b the revxse velocity is 0.3Uo on 

the centerline and decreases to 0.230 at z/H = 2.0. 

The maximum reverse velocities of the r-acting flow are higher 

due to heat releaee. “he maximum reverse velocities range from 0.39Uo 

to 0.48Uo €or the three Reynolds numbers. Since the flow is not 

adiabatic these depend on the amount of heat loss tr, the walls. 

The streamwise voiumetric recirculation t ic  each x position is 

plotted in Figure 3.17. For the isothermal flow, the reversed flow 

per unit width is 0.16UoH. This compares with a value of O.08Uo~ 

reported Moss and Baker’s reverse velocity 

(0 .2Uo) is lower than normal (0.25Uo) which accc,nts f w  some of the 

difference. Most of the difference is a result of the low aspect ratio 

used here which causes chree-dimensionalities in the recirculation 

zone. For example, the centerline profile in Figure 3.128 has a 

recirculation rate of 0.17UoH and the off-centcr profile has a value 

of 0 . O ? l I o H .  

by Moss and Baker (1980). 

The volumetric recirculation of the reacting flows are gi’gen in 
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Figure 3.17b for completeneas. The ma88 r e c i r c u l a t i o n  rates are 

dependent on t h e  local d e n s i t y .  The volumetr ic  r e c i r c u l a t i o n  v a l u e s  

cre h igher  a t  0.16UoR t o  q.26UoH. The volumetric r e c i r c u l a t i o n  i n  t h e  

x d i r e c t i o n  drops o f f  d e c i s i v e l y  to  zero  between x/H = 4 and 5 

i l l u - t r a t i n g  t h e  s h o r t e r  r e c i r c u l a t i o n  zone size for t h e  r e a c t i n g  

f lsw.  

From t h e  mean v e l o c i t y  p r c f i l e s  information on t h e  shear  l a y e r  

boundaries ,  growth rate,  f l u i d  entrainment ,  and reat tachment  length  

can be deduced. The e f f e c t s  of t h e  h e a t  of r e a c t i o n  on t h e s e  

r e a t t a c h i n g  shear  l a y e r  p r o p e r t i e s  w i l l  be considered i n  t h e  fol lowing 

s e c t  ions .  

3.3.2 Growth Rate. To q u a n t i i y  t h e  growth of t h e  l a y e r  one must 

One measure o f  t h e  th ickness  of t h e  layer i s  

- 
cons ider  i t s  boundaries.  

t h e  v o r t i c i t y  t h i c k n - s s , &  , given by, 
W 

where 

- u2 ALJ = u1 

3.1 

3.2 

and U and U a r e  t h e  v e l o c i t i e s  i n  t h e  upper and l o w v  streams, 

r e s p e c t i v e l y ,  and aU/ayl,, is  t h e  a e *  TI slope i n  t h e  l a y e r .  In h a l f  

I n  t h e  j e t  mixing l a y e r s  (U2 - 0 )  r3U i s  i d e n t i c a l  t o  U 

rearward-facing s t e p  conf igura t ion  U2 v a r i e s  due t o  t h e  non-zero 

v e l o c i t y  i n  the  r e c i r c u l a t i o n  zone (See Figure 3.16a) .  Here 6u i s  

est imated using the maximum v e l o c i t y  i n  t t  r e c i r c u l a t i o n  zone near  

1 2 

1’ 
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the shear layer edge. 

The vorticity thickness for the irothemal f l o w  are plotted in 

Figure 3.18. The two lower Reynolds number flows grow more slowly 

initially. The lower Reynoldr nlnaber rhear layers are initially more 

stable and the layer breaks down farther downstream. This is confirmed 

by eddy formation position measurements made previously from schlieren 

observations (Canji and Sawyer, 1980). All the growth curves have a 

fairly region and then drop off when wall interactions become 

important. Only the high Reynolds number data exhibit a truly linear 

growth and is fit with a slope of 6 ' = 0.28 in Figure 3.18. Estimates 

of the growth rate in the linear region vary from 0.27 to 0 . 3 .  These 

growth rates are much higher than those reported previously (Batt, 

1977). Only the growth rates of tripped half jet mixing layers (Batt, 

1975, Wvgnanski and Fiedler, 1970) approach this value (6 ' 0.23). 

The cxcess growth can bp traced to the non-zero velocities in the 

recirculation zone. Mixing lavers at high Reynolds numbers are self 

similar and their growth rnte is dependent on the parameters, 

linear 

w 

w 

3.3 

3 . 4  

For iaothermal flow ts - 1 )  the grovth rate is linearly dependent onA 

according to (Brown and Roshko, 1974): 
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6,' - 0.18 X 3.5 

For h a l f  jet  mixing layers ( A -  1) t h e  growth ;ate is 0.18. In 

rearward-facing s t e p  flows t h e  nega t ive  v e l o c i t y  i n  t h e  r e c i r c u l a t i o n  

sone causes  t h e  v a l u e  o f  X to  vary  between 1.2 and 2.0 i n  t h e  mixiag 

layer reg ion  of t h e  flow. An average v a l u e  of  1.6 could e a s i l y  

a c c m n t  f o r  high growth rate repor ted  (6 ' - 0.28). 
w 

Half jet flows with t r i p p e d  boundary lrlers grow slower at f i r s t  

and then overshoot t h e  asymptotic growth rate (Husain and H U I I a h ,  

1979, Birch,  1980). Overa l l  t h e  growth rate i n  high i n  t h e  developing 

reg ion  and causes  t h e  v i r t u a l  o r i g i n  t o  appear downrtrean o f  t h e  

s e p a r a t i o n  poin t .  The isothermal  mixing l a y e r s  seem to  fol low t h i s  

p a t t e r n  here .  A l l  t h e  v i r t u a l  o r i g i n s  are downstream of  t h e  s t e p  

which sugges ts  t h a t  t h e  boundary l a y e r  is indeed t r i p p e d .  The v i r t u a l  

o r i g i n  f o r  flow developing from a laminar boundary l a y e r  is upstream 

of t h e  s e p a r a t i o n  point (Husain and Hussain,  1979, Birch,  1980). 

According t o  Birch (1980) a t  high enough Reynolds nlrmbers 

(Re, > 2 x 10') t h e  growth r a t e  reaches an asymptotic va lue  and t h e  

v i r t u a l  o r i g i n  is downstream of t h e  separat io- i  point r e g a r d l e e s  of t h e  

i n i t i a l  condi t ions .  The mixing l a y e r  reg ion  of t h e  flow i n  t h i s  work 

is c l e a r l y  not well developed. The Reynolds n m b e r  i s  too low 

(Rexlmax - 2 x l o 5 ) ,  t h e  grovth r a t e s  a r e  h igh ,  Cnd t h e  v i r t u a l  origin 

is downstrec af t h e  s t e p .  

The v o r t i c i t y  th ickness  p l o t s  of t h e  r e a c t i n g  l a y e r s  a r e  shown i n  

Figure 3.19. The i n i t i a l  growth of t h e  l a y e r  is delayed s i g n i f i c a n t l y  

over t h e  isothermal caee.  Again t h i s  i s  a l o c a l  Reynolds number 
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- 3 1 2  
e f f e c t .  The Reynolde number va r i e s  l i k e  1 . $'rar thermocouple 

measurementm i n  the  layer (Gaaji and Sawyer, 19801, there  i r  a 

fac tor  of 4 increare  i n  temperature, which rerultm i n  an e ight fo ld  

decrease in Reynolds amber .  Thur the  ohear layer breakdoua i a  

delayed over the  nonreacting Cree, reducing the growth rate. 

abu t  

A t  x/a = 2, the  v o r t i c i t y  thickners for  B ~ H  = 1.5 x I# i e  much 

grea te r .  'Ibis r i g h t  be due, i n  pa r t ,  to  a low frequency i a 6 t a b i l i t y  

of  The ign i t ion  point uhich i o  

located j u s t  upstremn of t h e  e tep expans on (see Figure 3,8b) i e  

unstable for R% << 1.5 x 10'. n\e ign i t i on  point o s c i l l a t e 8  ia the  

streamwise d i rec t ion  causing the whole react ing layer  t o  f l a p  a t  8 l o w  

frequency. A t  R e H =  1.5 x 10 , the  layer  seems s t ab le  but under c lose 

observation some movement of the ign i t ion  point i s  detected.  This 

might r e su l t  i n  a very s l igh t  low frequency flapping of the layer 

which gives the large value of dU at x/H = 2. 

the  react ing layer mentioned e a r l i e r .  

0 

Estimates of the growth r a t e  of the react ing shear layere range 

from Again only a t  R% = 3.7 x 10' is the  growth 

t r u l y  l inear  and the da ta  i e  f i t  w i t h  6 ' = 0.29. A d i r e c t  c x i e o n  

of  t h e  v o r t i c i t y  thickness p l o t s  for  the  high Reynolds nmber cade is 

shown i n  Figure 3.20. I n i t i a l l y  the  growth of the react ing layer is 

suppressed due t o  t h e  lower Reynolds number in  t h e  react ing layer.  

Surprisingly,  the growth r a t e s  of the two layers  a re  nearly ident ica l  

a t  0.29 for the non-reacting layer and 0 .29  f a r  the react ing layer. 

but = 0.26 t o  0.29. 

W 

Brown and Roshko (1974) reported a 252 reduction i n  the  growth 

r e t e  for a half  j e t  mixing layer ( A  = 1) a t  high d e n s i t j  d i f ferences 

( p 2 / p 1  - 1/71. No reduction in  growth rat- .  YOB found i n  t h i s  study. 

This suggests tha t  the e f fec t  of the  densi ty  difference across the 
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l aye r  i o  counter balanced by t h e  e f f e c t  o f  heat  releame and v o l m t r i c  

expansion. 

For a reacting ahear layer, the  v o r t i c i t y  thickneme i e  only one 

mearure of  t he  layer boundary. The v o r t i c i t y  thickness  definer, t h e  

region of etrong moment- t r a n e f e r  but t h e  regione of c d u s t i o n  and 

heat  t r a n s f e r  can be q u i t e  d i f f e r e n t .  As eeen i n  3.13 - 3.15 

t h e  f l m e  boundary is  w e l l  above t h e  edge of t h e  mhear layer. 

Schl ieren p i c tu re s  such as i n  Figure 3.40 show reac t ion  taking place 

i n  the  la rge  scale s t r u c t u r e s  propagating ins ide  and above t h e  ohear 

layer .  Thus combustion is not confined to  t h e  rhear layer by 

the  mean ve loc i ty  flow f i e l d .  

Figures 

defined 

3.3.3 Entrainment. From Figure 3.13 - 3.15, it is evident  t h a t  

t h e  reac t ing  shear layer undergoes a s h i f t  downward into the  

r e c i r c u l a t i o n  zone. The upper boundary of the  shear  layer is p lo t ted  

ir. Figure 3.21a for  R% = 3.7 x 10'. The growth of the  rea t taching  

shear  layer  i n t o  the  upper stream is dramatical ly  reduced. A l l  t he  

reac t ing  layers  showed t h i s  behavior. 

In  the  reac t ing  flow, the flame extends above :he upper boundary 

of the shear layer  and the dens i ty  above the  shear  layer  is decreased. 

The upper strem ve loc i ty  U1(x) i s  near ly  iden t i ca l  for  both the 

reoct ing and non-reacting flow. Thue the  mass rate of entrainment of 

f l u i d  from the  upper stream i n t o  the  shear layor is reduced f o r  the  

reac t ing  flow 

3 . 3 . 4  Qeattachment. The reattachment lengLh is defined as the  

point i n  the separat ion region where there  is no net  flow reve r sa l .  

The reattachment length is determined t o  a large extent  by the growth 

of the mixing layer  i n t o  the r e c i r c u l a t i o n  tone. The lower boundary 
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of the  layer i r  d i f f i c u l t  to uses8 due to the very gradual decrease 

i n  the  dope .  The center  of the  shear layer can be defined by t he  

pos i t ion  where the ve loc i ty  equals AU/2. Ibe center l ine  posi t ion of 

the  and non-reacting layers at Rea = 3.7 x 10' is prerented 

i n  Figure 3.21b. The center  of the  react ing layer is sh i f t ed  downuard 

propagating toward the  wall more rapidly.  

react ing 

The reattachment lengths can be estimated frar the  ve loc i ty  flow 

f i e l i  p lo t s  given i n  Figures 3.13 - 3.15. They are sumarid in  

Table 3.2. Velocity p ro f i l e s  are taken i n  increments of E near  the  

reattachment point making the values accurate to  - + 0.5 E. The 

reattachment lengths for  the  react ing layers are reduced by 20 - 30%. 
This affirms the general s h i f t  of the layer  toward the lower -11. 

The moment- thickness Reynolds umber  of the  boundary layer a t  

separat ion,  Ree, is a l so  given i n  Table 3.2. The reattachment length 

va r i e s  with the boundary layer  state and therefore  Bee. Baton and 

Johnston (1980a) report a strong increase of xR with R e e  fo r  a laninar  

boundary layer.  The reattachment length peaks for  a t r ans i t i ona l  

boundary layer  and decreases s l i g h t l y  t o  an asymptotic leve l  for  a 

tu-bulent boundary layer state. The reattachment lengths do not show a 

strong dependence on Ree here indicat ing tha t  the boundary layer s t a t e  

is  t r ans i t i ona l .  

The reattachment lengths for the react ing flow increase about 20% 

as  Re increases.  For a laninar  boundary layer s t a t e  a t  separation, 

Eaton and Johnston (1980a) found a 30% increase i n  the  reattachment 

length w i t h  Ree. The high temperature i n  the i n i t i a l  shear layer  

region decreases the  local  Reynolds number and could have placed the 

functional var ia t ion  of x R  i n  the l m i n a r  region. 



With combust ion,  t he  reattachment 

flow reluer back t o  channel flow 

According to  Bradrhaw and Wong (19721, 

r e l axa t ion  occurs a t  a d i s t ance  of 30 
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lengths  are rho r t e r  and t h e  

rooner (Figures 3.13 - 3.15). 

i n  irothermal flows camplete 

t h e n  t h e  shear  layer th ickners  

a t  reattachment. This  corresponds t o  50 s t e p  he ights  dounetrea,  for 

t h i s  flow. 
- 

3.3.5 Transverse Velocity Flow Field.  The t ransverse  ve loc i ty ,  v ,  

is p lo t ted  fo r  ReH - 2.2  x lo' i n  Figure 3.22. The isothermal 

p r o f i l e s  vary with y as expected. I n i t i a l l y  the d iv id ing  s t reamline 

is  p a r a l l e l  t o  the y axis, and is  zero i n  the cen te r  of the layer. 

As the  dividing s t reamline curves downward, v is no longer 

perpendicular to it and the re  is a net  downward flow i n  the  center  of 

t he  layer .  In t h e  mixing layer v a r i e s  l i k e  y2 near the  cen te r l ine  as 

predicted by a simple gradient  d i f fus ion  model (Gzrtler, 1942). 

-- 

- 

The reac t ing  layer  p r o f i l e s  have a s imi l a r  behavior except t h a t  

heat  re lease  and dens i ty  va r i a t ion  cause the p r o f i l e s  t o  be 

asymmetric. The center  of the shear  l aye r  undergoes a s h i f t  downward 

cons is ten t  w i t h  the  results. 

3.4 Turbulence Development 

3.4.1 Turbulence In t ens i ty .  The streamwise turbulence i n t e n s i t y  

p r o f i l e s  for  are shown i n  Figures 3.23 - 3.25. In both the  reac t ing  

and non-reacting flows the  regions of high turbulence a re  bounded by 

t h e  shear layer ,  broadening as the  shear layer  grows downstream. Near 

reattachment,  the turbulence l e v e l s  decrease and the turbulence 

p r o f i l e s  begin t o  take on :he c h a r a c t e r i s t i c s  of turbulent  channel 

flow. I n  the reac t ing  flow, the reattachment lengths  a re  sho r t e r  and 

more of the post-reattachment region can been seen. The downstream 
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p r o f i l e s  are ragged ind ica t i ag  t h a t  t he  2048 point recorda are 

i a r u f f i c i e a t  t o  produce a t r u e  werage.  

Gradient broadening of t he  turbulence i n t e n s i t y  is removed i n  t h e  

rhcar  layer  (See Sect ion 2.5.7). 'Ihe ve loc i ty  grad ien t  is ca lcu la ted  

by f i t t i n g  an e r r o r  funct ion to  the  mean ve loc i ty  d a t a  i n  t h e  ohear 

l aye r  with a l eae t  squares f i t  rout ine.  The broadening i n  t h e  t o p  and 

bottom boundary l aye r s  is not removed. The maximum cor rec t ion  i n  the  

shear  layer  at  auldyl is about u /Uo - 0.03, 0.02, 0.005 f o r  

n/H = 0 . 5 ,  1.0, 2.0, respec t ive ly .  

U X  rUlS 

The exact pos i t ion  of t he  maximum value of t he  turbulent  

i n t e n s i t y  is  d i f f i c u l '  t o  determine but t he  general  trend can be seen. 

I n  Lhe isothermal flow the  pos i t ion  of t he  maximum i n i t i a l l y  coincides  

with the  cen te r l ine  (y/H = 0 ) .  It then d i p s  s l i g h t l y  toward t h e  

r ec i r cu la t ion  zone and rises back toward the  cen te r l ine  near 

reattachment. These same t rends  have been reported previously (Eaton 

and Johnston, 1980a). The reac t ing  layer behaves the  same way except 

the  d i p  is  much more dramatic. The maximum value follows the  s h i f t e d  

shear  approaching the bottom wall much more c lose ly  and then rises 

toward the cen te r l ine  a f t e r  reattachment. 

The maximum turbulence value,  %s/Uolmx, is  p lo t ted  i n  Figure 

3.26a for  the non-reacting flow. The i n i t i a l  increase of the  

turbulence i n t e n s i t y  is  due t o  the  formation of the  la rge  eca le  

s t ruc tu res  which form e a r l i e r  fo r  the  high Reynolds number flows. The 

Kelvin-Helmholtz i n s t a b i l i t y  t h a t  results i n  the formation of the  

la rge  s t ruc tu res  i s  dependent on a c r i t i c a l  Reynolds number on 

x .  The i n s t a b i l i t y  occurs first for  the  high Reynolds number flows. 

These r e s u l t s  a r e  confirmed by eddy formation pos i t ion  da ta  ded.iced 

based 
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from sch l i e ren  observat ions made i n  non-toacting flow by Ganji  and 

Sawyer (1980). They found t h a t  the eddies  formed at  ./E = 0.63, 0.55,  

0.47 f o r  R e H '  1.5 x 10 * 2.2 I 10 , and 3.7 x 10 * respec t ive ly .  
4 4 4 

For a l l  the  non-reactiag experiments, t h e  turbulence i n t e n s i t y  

reaches a oaximm 1 to  2 s t e p  he igh t s  before  reattachment. The 

turbulence l eve l  for t h e  low and medim Reynolds n d e r  cases 

gradual ly  increase t o  t h i s  maxhm. This  monatomic increase of  t h e  

turbulen t  i n t e n s i t y  t o  a maximum 1 to  2 s t e p  he ights  before  

r e a t  tachment has been found i n  o the r  rearward-facing s t e p  exper-bents  

such as K i m  et a1 (19781, Eaton and Johnston (1980a1, and Etheridge 

and Kemp (1978). A complete summary of backward-facing s t e p  turbuleoce 

l e v e l s  has been given by Eaton and Johnston (1980b). 

The turbulence development of  t h e  high Reynolds number flow does 

not reach a s i n g l e  peak. The l e v e l s  peak e a r l y  at x/H = 0.5 and then 

decay and reach a second maximllm a t  x/H = 4. Bradshaw (1966) found a 

s imi l a r  behavior i n  a mixing layer  formed a t  t h e  edge of a nozzle.  

Both the  turbulent  shear  stress and u-turbulent i n t e n s i t y  were 

double-peaked fo r  t h e  mixing layer  formed from a laminar boundary 

layer. Bradshaw suggests t ha t  t h i s  second maximm "marks t h e  

establishment of the  shear-producing p a r t  of t h e  turbulence spectrum". 

Examining t h e  f u l l  turbulent  p r o f i l e s  for  ReH = 3.7  x 10 i n  Figure 

3.25a, one not ices  tha t  the p r o f i l e s  a t  x/H = 1-3 are f l a t  topped and 

even double-peaked i n  the  shear layer .  The rest of the  d a t a  is 

single-peaked which make these  p r o f i l e s  suspect .  Thus more 

wasurements  need t o  be made t o  confirm whether t he  turbulence growth 

i s  double-peaked and whether the  second peak marks the  emergence of 

f u l l y  three-dimensional flow. 

I 
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The maxim- turbulence level in  t h e  rhear layer f o r  a11 t h r e e  

Reynolds a m b e r s  is um$Uo = 0.28. Turbulence i n t e n s i t y  va lues  of  

0.21 are more typ ica l  fo r  backward-facing r t e p  flows (Baton and 

Johnston 1980a). A a m b e r  of  condi t ions  lead t o  t h i s  high The 

freeatream turbulence is high a t  2-3%. Also the  aspect  ra t io  is low 

(6.9) which causes s i g n i f i c a n t  three-dimensional e f f e c t s  and r e s u l t s  

i n  a high reverse  ve loc i ty .  The ve loc i ty  d i f f e rence  acrose t b e  layer, 

AU, is  1.33Uo as opposed to  1.2Uo for t y p i c a l  flows. Renormalizing t h e  

turbulence l e v e l s  would decrease the  m a x i m m s  by 10%. 

l eve l .  

Unt i l  curvature  e f f e c t s  a r e  s t rong ,  t he  shear  layer  formed a t  a 

rearward-facing s t e p  is very similar to a plane mixing layer .  However, 

t h e  maxim- turbulence leve l  found i n  backward-facing s t e p  flows 

( u r n s =  0.21Uo) is normally higher  than plane mixing l aye r s  

(urns = 0.171'0, Ba t t ,  1977). The higher  turbulence l e v e l s  f o r  

backward-facing s t eps  is a r e s u l t  of  t h e  r e e n t r e i w e n t  of pressure 

dr iven ,  highly turbulen t  f l u id  i n t o  the  r e c i r c u l a t i o n  zone (Bradshaw 

and Wong, 1972). For half  jet mixing l aye r s  t h e  f l u i d  on one s i d e  is 

a t  r e s t  and the  turbulen t  i n t e n s i t i e s  a r e  normalized by the constant  

v e l o c i t y  d i f fe rence  acroes  the  layer  A U  = 110. In the  backward-facing 

s t e p  flows A U  i s  not constant and is  t y p i c a l l y  1.2Uo (AU = 1.3Uo i n  

t h i s  experiment).  Renormalizing by the  loca l  value of AU would 

decrease the  trirbulence l eve l s .  Not only is  the  f lu id  i n  t h e  

r e c i c u l a t i o n  zone not a t  rest, but i s  highly turbulent  ( u r n s =  0.1Uo) 

which a l s o  increases  t h e  turbulences l e v e l s  i n  the  shear  layer .  

The turbulence l eve l s  for  a l l  t h ree  flows decrease rap id ly  1-2 

s t e p  he ights  before  reattachment.  This has been reported by o the r  

researcher r  (Eaton and Johnston, 1980a). The tw' explanat ions proposed 
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t o  expla in  t h i s  decrease are rhear  l aye r  curva ture  and s p l i t t i n g  of  

t h e  eddiea near reattachment (Eaton and Johnston, 1980a). Castro and 

Bradshaw (1976) found curva ture  i n  shear  l aye r s  to  be s t a b i l i z i n g  and 

cause a rapid decay of turbulence.  The curva ture  of t he  l aye r  is 

s t rong  i n  the  reattachment region which decreases  t h e  turbulence 

l eve l s .  Bradshaw and Wong (1972) reported a s p l i t t i n g  of t h e  eddies  

near  reattachment,  c a l c u l a t i n g  t h a t  the  length scales decreased by a 

f a c t o r  of two. These eddies  produce most of t he  shear  stress and t h e i r  

s p l i t t i n g  resul ts  i n  a decrease of t he  turbulence near reattachment.  

I n  t h i s  s tudy,  measurements of the  eddy frequency (Sect ion 3.5)  

region. show no reduct ion of t he  eddy wavelength i n  the  reattachment 

The eddy s t r u c t u r e s  as seen from the  LDV and sch l i e ren  measurements 

maintain t h e i r  i n t e g r i t y  throughout t he  reattachment zone. Thus the  

primary mode for  the  turbulence decay i s  a r e s u l t  of t he  curvature  of 

t he  shear layer .  

The r eac t ing  flow (Figure 3.26b) has higher  rurbulent  i n t e n s i t y  

va lues  of 30-35% a s  a r e s u l t  of vol tmet r ic  expansion i n  the  layer. The 

d a t a  exh ib i t s  two separa te  growth and decay per iods suggesting a t  

l e a s t  four mechanisms con t ro l l i ng  the  development of the  turbulence.  

The f i r s t  growth period is delayed over the  isothermal flow a s  the  

l a rge  sca l e  s t r u c t u r e s  form l a t e r  (Table 3 .3 ) .  The aubsequent 

turbulence decay is connected with the  two-dimensional s t r u c t u r e s  

burning, coa lesc ing ,  and growing as they a re  convected through the  

probe volume. The second growth region probably r e s u l t s  from the  

in t roduct ion  of m a l l  s ca l e  three-dimensional turbulence.  Konrad 

(1976) found a three-dimewsional i n s t a b i l i t y  i n  the  l a rge  sca l e  

s t r u c t u r e s  formed i n  a plane mixing layer  t ha t  increased turbulent  
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mixing by 252. Since the  turbulent  Schmidt nmber  rhould be near un i ty  

t h i s  would a l so  increase the  turbulence in t ens i ty .  For the  th ree  

Reynolds nmbers ,  the  t r a n s i t i o n  rrould occur a t  ;/a * 1.5 - 2.5 for 

room temperature air .  Heat release would delay the  t r a n s i t i o n  and the  

high turbulence i n  t h e  boundary l aye r  would tend t o  advance it .  I f  the  

second growth period is  due t o  Konrad's i n s t a b i l i t y ,  t he  Reynold's 

a m b e r  should a f f e c t  its locat ion.  There is not enough d a t a  i r r  Figure 

3.26b t o  determine whether t he re  is a Reynolds nunber e f f e c t .  Again 

t h e  turbulence decays as the  curvature  e f f e c t s  become s t rong ,  1-2 s t e p  

height8 before reattachment. 

The turbulence i n t e n s i t y  p r o f i l e s  of  the  t ransverse  ve loc i ty  are 

given in  Figure 3.27 f o r  R e H =  2.2 x 10 . The values  of v-8 and urns  

a r e  the sane i n  the freestream but vms i s  much less near ly  everywhere 

e l s e .  In the r ec i r cu la t ion  zone a t  x/H = 2 and 5 ,  vms i s  as la rge  a s  

The values of v ~ ~ / u ~ ( ~ ~ ~  a r e  given i n  Figure 3.26. The 

t ransverse  turbulence does not grow s i g n i f i c a n t l y  u n t i l  w e l l  a f t e r  the 

l a rge  s t ruc tu res  a re  formed. The isothermal values  a re  about 30% below 

c 
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the  streamwise turbulence da ta  but the  m a x i m u m  occur a t  the  sane 

pos i t ion .  These r e s u l t s  a r e  cons is ten t  with o ther  backward-facing s t e p  

da t a  ( i . e .  Etheridge and Kemp, 1978, K i m ,  Kline,  and Johnston, 1978). 

For the react ing flow a t  x/H = 0 .5 ,  the  l d i e s  have not formed yet  and 

the re  is  no c l e a r  maximum value of vms i n  the shear  layer .  The value 

of v,,/Uo at the same y pos i t ion  as u m$Uokax is  given i n  Figure 

3.26b. The downstream values  of vrns a re  s imi la r  t o  the atreamwise 

da t a .  The vrmS da ta  a t  x/H = 3 which i s  about one s t e p  height beyond 

reattachment looke more developed than the urns da ta  ind ica t ing  tha t  

the  reattachment a f f e c t s  vms more stror-qly. 



3 . 4 . 2  P r o b a b i l i t y  Densi ty  Functione. Typical  PDF8 of  t h e  

streamwise v e l o c i t y  component f o r  t h e  isothermal  l a y e r  are d isp layed  

i n  Figure 3.28. is 

u n i t l e s s  and def ined  euch t h a t  t h e  i n t e g r a l  of (P)d(U/Uo) is 1. The 

weighting f a c t o r  ueed t o  c o r r e c t  t h e  LDV counter  b i a s i n g  d iscussed  i n  

Sec t ion  2 . 5 . 4  i s  not e x a c t l y  correct and t h e  PDFs e t i l l  have 

sys temat ic  no ise .  To c o r r e c t  t h i s  problem t h e  PDFs of  t h e  Doppler 

b u r s t  should be s t o r e d  and t h e  PDF o f  t h e  v e l o c i t y  c a l c u l a t e d  

with v e l o c i t y  i n t e r v a l s  corresponding to  u n i t  incremeats  of t h e  

d i g i t a l  b u r s t  per iod.  A l l  PDF8 from counter  processors  W i l l  c o n t a i t  

sys temat ic  no ise  independent of s m p l e  size unless  PDFs a r e  c a l c u l a t e d  

i n  t h i s  fashion.  

The p r o b a b i l i t y  d e n s i t y ,  P, on t h e  ver t ica l  scale 

per iod 

The p o s i t i o n s  of these  Pdfs  i n  t h e  shear  l a y e r  are i n d i c a t e d  i n  

Figure i . 2 9 ~ .  The skewness and f l a t n e s s  f a c t o r s  d e t e m i n e d  from t h e  

PDFs are displayed i n  Figures  3.29a and 3.29b. The skewness which i s  

t h e  t h i r d  moment of t h e  PDF i n d i c a t e s  symmetry. The f l a t n e s s  f a c t o r  or 

f o u r t h  moment d e s c r i b e s  how f a s t  t h e  d i s t r i b u t i c ~ i  decreases  i n  t h e  

wings. A Gaussian d i s t r i b u t i o n  h a s  zero  skewness and a f l a t n e s s  

f a c t o r  of 3. The PDFs above and below t h e  shear  l a y e r  a r e  Gaussian 

( a" and "f").  Near t h e  edges of  t h e  shear  l a y e r  (PDfs "b", I'd" , and 

"e") On t h e  low v e l o c i t y  edge PDF "b" 

i s  p o s i t i v e l y  skewed with a long t a i l  on t h e  high v e l o c i t y  s i d e .  PDFs 

"d" and '*erc on t h e  high v e l o c i t y  edge of  t h e  shear  l a y e r  have t a i l s  on 

t h e  low v e l o c i t y  s i d e  and Ere n e g a t i v e l y  skewed. The f l a t n e s s  f a c t o r s  

a r e  t,igh a t  t h e s e  p o s i t i o n s  a s  t h e  d i s t r i b u t i o n  f a l l s  o f f  more slowly 

than a Gaussian ( > 3 ) .  In  t h e  c e n t e r  of t h e  l a y e r  (PDF "c") t h e  

turbulence  i s  the  h ignes t  but  t h e  d i s t r i b u t i o n  i s  Gauesian. A l l  t h e  

non-Gaussian behavior is seen. 



rkewness and f l a t n e s s  f ac to r s  are normalized by the  turbulence 

i n t e n s i t y  calculated from the  PBFs. 

The PDF8 shown here a re  not corrected fo r  ve loc i ty  gradient  

broadening which vi11 increase the  width of the  PDF6 near the  s tep .  

Gradient broadening w i l l  a l so  a f f e c t  the  skewness and f l a t n e s s  f ec to i a  

and i ts  contr ibut ion t o  these f ac to r s  is 

2.14. Gradient broadening of the  skevness 

function f i t  of the c-velcci ty  da ta .  
~ 

(R% = 3.7 x lo', x/H = 0 . 5 )  i s  u3/u& = 

given by Equations 2.13 and 

is  estimated from an e r r o r  

The max imum cont r ibu t ion  

0.04 which i s  negl ig ib le .  

Gradient broadening of the  f l a t n e s s  f ac to r  is  removed by normalizing 

the  f latness  f ac to r  by the gradient broadened turbulence in t ens i ty .  

A l l  values of urms shown i n  t h i s  sec t ion  a r e  ca lcu la ted  from the  

PDFs and a re  gradient broadened near the s tep .  The skewnrss i6 a l so  

normalized by t h i s  vaiue of urms. In the center  of the  shear layer a t  

x/H = 0 . 5 ,  t h i s  causes a .iormalization e r r o r  giving values of u 3  & * - ! I  

a r e  smaller by f ac to r s  of 1.8 t o  4.1. Beyond one s t e p  height  the  

normalization e r r o r  i s  negl ig ib le .  The normalization e r r o r  near the 

s t e p  does not change the s ign of 1 t 3  only i t s  absolute  magnitude. The 

character  of the va r i a t ion  of the skewness i n  the  layer  i s  unchanged. 

the 

i 

- 

The non-Gaussian behavior of the  turbulenct, near the edoes of the 

shear layer i n  u'igures 3.28 and 3.29 can be explained by considering 

the large sca le  s t ruc tu res .  They form quasi-per iodical ly  a t  

x/H 2 0 . 5 .  The large s t ruc tu res  in t e rmi t t en t ly  grow t o  a s u f f i c i e n t  

s i z e  t o  a f f ec t  the edges of the shear laver .  When t h i s  happens thcv 

convect low ve loc i ty  f l u i d  t o  the upper edge ("d") and hi;:, ve loc i ty  

f l u i d  t o  the lover edge ("b"). fie ve loc i ty  of ? +  ' l u id  convected by 

t h e  l a rge  ecale  e t ruc tu res  departs  more r a d i c a l l y  from the mean 
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ve loc i ty  than the  ve loc i ty  v a r i a t i o n  due to  -11 rcale turbulence and 

t h e  t a i l s  are produced. The va r i a t ton  of skewaess and f l a t n e s s  shown 

in Figures 3.29a and 3.29b is cons is ten t  with da t a  in  isothermal f r e e  

rhear  layers  (Spencer and Jones,  1971) 

The skewness and f l a t n e s s  fac:ors f o r  t h e  low Reynoids number 

flovs are given i n  Piguree 3.30 and 3.31. The non-reacting flow is 

negat ively skewed i n  the  upper edge of t he  shear l aye r  and pos i t i ve ly  

ske-.ed i n  the  lower edge. This behavior maintains i t s e l f  even a f t e r  

rt?attaChEent. The non-Gaus~ian behavior 18 much s t ronger  i n  the  upper 

pa r t  of the  layer  h e r e  the  g.r-';ents are etronger  and the  turbulence 

is lover.  The f l a t n e s s  frrLur i n  the  high ve loc i ty  edge is  much 

g rea t e r  than 3.  The f l a t n e s s  f ac to r  in +hP r e c i r c u l a t i o a  zone is 

near ly  Gau-sian except ne:- the s t e p  (x/H < 1).  

The skewness of the  turbulence i n  the  reac t ing  flow looks qu i t e  

d i f f e ren t  :- f i r o t .  Hovever there  are s imilar i t ies  &en one considers  

t h a t  t h e  reac t ing  layer  is sh i f t ed  downward w e l l  below the  cen te r l ine  

of the t e s t  sec t ion .  Exmining the  E-velocity p r o f i l e s  in Figure 

3.13b, the 'DFs BIL pos i t i ve ly  skewed a t  t he  lower edge of ;he ohear 

laj-er an? negati-Jely skewed near the upper edge a s  i n  the  isothermal 

1 eyer . 

n e  non-Gaussian behavior for  non-reacting and .reacting flaw are 

very s imi la r  a t  x/H = 1. F n  cmparieon the  reac t ing  flow PDF8 a r e  

s h v w  i n  Figure 3.32 a t  e s i l a r  loca t ions  as  1;ivnn fo r  the  

aon-reactinn PDFs i n  Pipure 3.28. The poeitinn of .he PDF6 i n  t he  

shear layer ,  the  ekewness end f l e t n e i s  f ac to r s ,  anti the  turbiilencr 

in rene i ty  a re  given in  Pi8,ires 3.?3a r h . x  3.33d. The var i e t ion  of t he  

rkevness and f la tnes8  f ac to r s  i e  the  c * a8 tile non-reacting flow at  
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x/H - 1. 

There are two major d i f f e rences  i n  t h e  non-Gaussian behavior in 

&e reacting flow. In Figure 3.30b, f o r  x/R > 1, t h e  a k e ~ e s s  has a 

p o s i t i v e  peak a t  t h e  upper boundary of t he  8hear l aye r  given by t h e  

u-velocity pro t  .Lets. The negat ive peak i n  t h e  skewness is 8 l i g h t l y  

Below t h i s  boundary. To i l l u s t r a t e  t h i s  behavior,  t h e  PDFs and t h e i r  

moments As before  PDF "b" is 

skewed pos i t i ve ly  a t  t h e  lower edge of t h e  shear  layer .  Rowever, j u s t  

below t h e  upper edge t h e  skewne6s is  negat ive (''c") and at  t h e  upper 

boundary the  Ske~neS6 is pos i t i ve  ("e"). 

- 

are displayed i n  Figures  3.34 and 3.35. 

The exis tance  of t h i s  second pos i t i ve  peak is a r e s u l t  of 

combustion i n  t h e  layer .  A s  seen from sch l i e ren  observat ions,  

combustion occur6 wi th in  t h e  large s c a l e  s t r u c t u r e s  as they convect 

downstream. The upper boundary on t he  growth of these  l a rge  s c a l e  

s t r u c t u r e s  can be determined from long exposure sch l i e ren  photographs 

such as  F i g u r e  3.44. This boundary represents  tbo  f a r t h e s t  excursion 

of the  eddies  irlto t he  upper inv isc id  stream and i s  t h e  edge of t h e  

flame. bomdary as seen i n  Figure 3.13 is above t h e  shear  layer  

given by the  Ti-velociry p r o f i l e s .  The expansion of t he  eddies  t o  

reac t ion  f i l l s  out the  upper par t  of t h e  shear  layer  and feeds t h e  

momentum t r a n s f e r  across  the  ehear layer .  A t  t he  same t i m e  t he  

semi-periodic padsing of the  expanding f l u i d  between the  top  of t h e  

shear  layer  m d  the  upper flame boundary produces 8 high ve loc i ty  t a i l  

on t he  FI'Fs (See Figure 3.34, PDF c").  The pasit 've peak occurs 

between the  upper edge of t he  flame and t h e  top  of t h e  shear  layer  

(See Figtires 3 . 3 0 b ,  3.34 and 3 . 3 5 ) .  Thus t he  aecond pos i t i ve  skewness 

peak results from the  impelling e f f e c t  of t h e  l a rge  s c a l e  s t r u c t u r e s  

The 

due 

.- 
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expanding between the  t o p  of  t he  rhear  l aye r  and t h e  upper boundary of 

t h e  flame. 

The f l a t n e s s  f ac to r  i n  the  r eac t ing  l aye r  is high from t h e  t o p  o f  

t he  shear  layer  t o  the  uppe: thermal boundary even though the  skewness 

changes s ign  (Figure 3 3lb) .  For exampie, PDF "d" i n  Figure 3.34 has  

nea r ly  zero ekewness but t a i l s  on both wings of t h e  PDF produce a high 

f l a t n e s s  f ac to r .  A t  t h i s  pos i t i on  the  l a rge  s c a l e  s t r u c t u r e s  convect 

both high speed f l u i d  from reac t ion  and low rpeed f l u i d  from t h e  

r e c i r c u l a t i o n  tone. Similar  behavior i n  t h e  skewness and f l a t n e s s  

f a c t o r s  for  reac t ing  flow can be seen a t  t he  medium an9 high Reynolds 

numbers i n  Figures 3.36 and 3.37 except t h a t  t he  pos i t i ve  skewness 

peaks above the  shear layer  for the  high Reynolds nmber  flows are not 

a s  evident i n  rhe downstream pcrstions. 

The second rna-ior d i f fe rence  i s  near the  s t e p  a t  x/U = 0 . 5 .  In 

a l l  the reac t ing  flows the  skewness h a s  negative peaks a t  both t h e  

lower and upper edges. The skewness has  a pos i t i ve  peak near t he  

cen te r  of t h e  layer .  This regio9 is  more c l e a r l y  examined i n  Figures 

3.38  and 3 .39 .  Typical PDFs a re  given in Figure 3.38 .  A t  t he  lover 

edge of t h e  layer  ("b") the  PDFs a r e  negat ively skewed. The PDF5 a re  

pos i t i ve ly  skewed j u s t  below the  cen te r  of the  layer  (''d'')* Gaussian 

i n  t h e  cen te r  (between "d" and ' e " ) *  and negat ively skewed near t h e  

t o p  ("e"). The pos i t i ve ly  skewed PDFs near "d" a re  a l l  bimodal. A l l  

PDFs a t  t h i s  loca t ion  i n  the  reac t ing  f l o w  a r e  bimodal. thtetyuhere 

e l s e  the PDF8 a re  8 @-peaked. 

Two explanat ions fo r  t he  double-peaked na ture  of the  PDFs near 

t he  s t e p  can be given. The in t e rmi t t en t  formation of the la rge  sca l e  

s t r u c t u r e e  due tcr the I n e t e b i l i t y  of t h e  shear layer  could cause a 
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b h d a l  ?DF. The f o x u t i o n  of  t h e  rtructurer producer rapid bproirU, 

high local beat releare, and eapmrion. The average veloc i ty  of th io  

event would be higher than the  ve loc i ty  in the  l u n a r  1-r rrhao 

t he re  is no breakdown. 

Secondly, the bimodal behavior could be a r e r u l t  of low freqwency 

flapping. Ae dircurred earlier, the  react ing layer f lap8 r l i g h t l y  at 

t h e  l o w  Reynolds a d e r  condition. S l igh t  f l a p p i q  of the thin &ear 

l ayer  at th io  por i t ion  could produce a doublepeaked ve loc i ty  

d i r t r i bu t ion .  Since the  bimodal PDF6 are  found €or a11 th ree  Reynoldr 

ntmbers and f r m  the  rch l ie ren  rauier there  doer not seer to  be any 

flapping a t  the  higher Reynolds nmberr ,  the  f i r r t  u p l a n a t i o t ~  i r  more 

plausible .  

3.5 Large Scale Structures  

The presence of large r ca l e  e t ructures  i n  f r e e  rbear layer r  and 

i n  react ing shear layers  has been firmly eetablished (Broun and 

Roehko, 1974, Cenji and Sawyer, 1980). The large rca l e  rtructures 

form ea r ly  i n  the  rhear layer  frcm a Kelvin-Helmholtz i n r t a b i l i t y  

(Sherman, 1976). The rtructures are two-dhenrional i n  o8ture and 

grow by coalescence and entrainment ab they are convected throug5 the  

layer.  For premixed combustion in the  layer ,  the  react ion occur8 i n  

the  eddies as they en t ra in  premixed reactante and hot productr. Beat 

release expand6 the  r t ruc tu re r  and contribute6 t o  the  growth of the  

l q e r .  

Since the  large r ca l e  r t ruc tu re r  control t o  a great  extent  the  

turbulence mtructure, a major 80.1 i n  ehie rtudy i r  t o  aoreir the  

e f f e c t  of combustion on t h e i r  evolution. The large r ca l e  scructurer  

a r e  anrlyted with high rpesd mchlierea photography and rpec t ra l  
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analprim of the L W  r igna l .  

3.5.1 Schl ieren Photographic Obrervationr.  Schl ieren photo6raphs 

of t he  reac t ing  flow a t  the  th ree  entrance Reynolds almbern are rhom 

i n  Figure 3.40. Ihe exporure time varys  from 49 t o  74 us. me large 

s c a l e  r t r u c t u r e s  are prominent throughout t he  flow f i e l d .  The rod 

rhaped object  protruding from the  top  is t he  ign i to r .  The dark bands 

h ighl ight  the  high temperature grad ien ts  due t o  coeburtion. The 

combustion is taking place i n  l a rge  sca l e  s t r u c t u r e s  forming near t he  

s t ep .  The f l u i d  above and below the  layer  i s  f a i r l y  isothermal.  

The i n i t i a l  shear layer can be reen more c l e a r l y  i n  Figure 3.8. 

The sch l ie ren  i s  desens i t ized  i n  3.8b and shows the  point of i gn i t i on  

at  the  edge of the  s t ep .  The l a rge  sca l e  sca l e  s t r u c t u r e s  form as the  

i n i t i a l  shear layer breaks down. The s t r u c t u r e s  grow by f lu id  

entrainment,  heat expiinsion, and coalescence. 

The mechanism of coalescence is i l l u s t r a t e d  i n  Figure 3.41. The 

sequence of photogragha a re  spaced 0.3 ms apa r t .  The coalescence 

process which is  the combining of tu0 neighboring eddies  i s  a l so  

ca l l ed  amalgamation or pair ing.  The pa i r ing  process is  round i n  

i s o t h e w a l  free shear layers (Winant and Browand, 1974) and in  

reac t ing  shear layers  (Ganji and Sawyer, 1980). The upstream eddy 

overtakes rhe downstream eddy and the two combine i n t o  one eddy with 

twice the o r ig ina l  s i t e .  Brown and Roshko (1974) reported eddy pa i r ing  

t o  be one of the major growth mechanisms i n  free shear layers .  

A t  the  high Reynolds number flow, the la rge  sca l e  s t ruEtures  do 

not appear t o  be as  ordered a s  the low Reynolds number flow (Figures  

3 . 8 ~  and 3.42). This i s  probabl] due t o  three-dimensional i t ies  i n  the 

breakdown of the laver  near the s t ep .  For a l l  the reac t ing  flow8 the 
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flame appeur t o  otabi l i re  at more than one region on the otep Me 

allowing the layer t o  break dovn a t  different timer acrorr the f l w .  

The high Reynolds rider flow reem more rwcept ible  to thio 

three-dimermional breakdown cawing the blurred picturer in Figure6 

3 . 8 ~  and 3.42. 

The awerage shedding position i o  detexmined f r a  the ochlieren 

Bistograms of the rhedding position (Figure 3.43) f r a  movie6 

and 2.2 x 10' are Gaussian. The oheddimg position 

m o v i e s .  

a t  = 1.5 x 10' 

decreases with Reynolds n d e r  as the ohear layer is less r table  at 

higher Reynolds nmbere. 

Long exposure photographs are taken t o  deduce the fl-e 

boundary. Figure 3.44 shove a schlieren photograph of the f l r e  there 

the bright area8 indicate high temperature gradients. The top edge is 

the flame boundary and i e  uppermost propagation of the large scale 

structure8 into the  upper f ree  stream. This bwndary ai40 represents 

the upper boundary of the thermal layer since the primary mode of heat 

transfer is convection of burning gases in  thc large scale rtructures. 

The flame boundary of the three Reynolds number flovs is o h m  i n  

the Figure 3.45. The ver t ical  scale is greatly expanded t o  emphasize 

differences i n  the spreading rates .  The flame spread decreases for 

the higher Reynolds ambers rrince the rtoichiometric r a t i o  i r  constant 

(6 = 0.57). Tire flmne rpread for the low Reynolds number flow is  

higher than one would expect from the Reynolds ntmber decreare. 

Slight low frequency flapping is obrerved at t h i s  condition d i c h  

resul ts  in  the higher flame rpread. lo flapping is  obrerved at the 

other conditione. 

The average parsing frequency of the eddies is meaoured a t /  
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d i f f e r e n t  downstream port ions.  Using a motion analyzer a v e r t i c a l  

l i n e  is porit ioncd at a rpec i f i ed  loca t ion  on t he  movie Rach 

t i m e  a eddy passes the  l i n e ,  t he  frame nudper ' 8  recorded. The 

passing frequency is calculmted QS t he  inver re  of t h e  t i m e  between 

eddies.  Histogram of the  passing frequency are shown i n  Pigure 3.47a 

and 3.68a. The histograms are pos i t i ve ly  skewed near t he  s t e p  end 

more Gaussian downstretm. This passing frequency da ta  is be compared 

with the  passing frequency determined from LDV spec t r a  i n  the  next 

sec  t ion. 

frame. 

3 .5 .2  - LDV Spectra.  The frequency spec t r a  of t he  v e r t i c a l  ve loc i ty  

comport a t  is recorded t o  measure the  la rge  scale passing frequency i n  

the  lever .  The s t ruc tu res  a re  most e a s i l y  de tec ted  by posi t ioning the  

LDV probe volume i n  the  center  of t h e  shear  layer  and measuring the  

v e r t i c a l  ve loc i ty  component. A s p e c t r m  taken i r r  'he isothermal layer  

i s  sbowa i n  Figure 3.46. The broad peak in  the spectrum is generated 

by the large sca l e  s t ruc tu re .  

The LDV spcztum for  the reac t ing  flow at the  same pos i t ion  

(Figure 3.47b, x/H = 2 )  has a broad peak SuperimFOSed with narrow 

acoust ic  peaks. The evolut ion of the  larse s c a l e  s t r u c t u r e  i n  the  

reac t ing  flow is more c l e a r l y  revealed i n  Figure 3.49. A broad peak 

i n  the spec t ra  i s  f i r s t  seen a t  x/H = 1 and the  peak decreases i n  

frequency w i t h  downstream dis tance.  The width of the broad peak is 

about the same as  found i n  the  non-reacting flow h e y e  no acouscic 

h -  c-0 evident .  Narrow peakc i n  the  spectrum from acoust ic  

c *E;. :? the combustor a r e  more pronounced near the  s t e p  and 

,A 
r p r i t u d e  as x/H increases .  

1 :ouetic reeonances do .rot seem t o  a f f e c t  the 
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developrent of the l u g e  rcale rtucturer. The brod peak 

correrponding t o  the l u g e  rcale p u r i n g  frequency appeur  at ./E = 1 

and rroothly decrearer in frequency through the layer. The b r o d  peak 

i r  aluayr much wider than the narrou .corotic peak0 indicating tha t  

the l u g e  rcala rtructurer u e  newer c a p l e t e l y  coupled 6 t h  the 

acouoticr. The mouotic d e r  a e  fixed in frequency -uughout  the 

layer. 

When coupliog of acourticr and the l u g e  scale developrurt doer 

OCCUT, the effects  u e  d r a a t i c .  Reller et el  (1981) excited the 

reactiqe rhear layer i n  t h i s  apparatus with a loud rpeaker. Uring a 

driving frequency of 200 Ez a t  a relat ively omall power level, they 

uere able t o  couple the l u g e  rcale passing frequency v i th  the 

acoustic frequency. Eigh rpeed a v i e r  of the reacting r h e u  layer 

disclored that the large scale structures uere ccmpletely coherent. A 

large increase of the growth rate took place when the eddie parring 

frequency matched the acoustic driving frequency. The structures had a 

constant wavelength beyond t h i s  point and no coalescence is obrerved. 

Coupling of acoustic pxturbat ions md the large rcale stucture 

parring frequency has also been reported i n  miring layerr (Fielder et  

e l ,  1977). Hone of there coupling effect8 are obJerved here. 

The eddy formation p o r k  t, %/E, i r  e r t h t e d  fram the LDV 

spectra. The f i r r t  appearance of 8 broad peak i n  the rpectra i r  

approximately the  average eddy rhe'ding porition. The e r t h t e d  

valuer are given i n  Table 3.3 along with the more accurate ochlieren 

deterpinationr. Ileasure~antr of the LDV apectra are taken every 1/2 

rtcp height near t h e  r tep m d  the ohedding poritionr match v i th in  that 

uncertainty. Again the rhedding poiit ion increarer with decrearing 
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Reynolds number. In t h e  r eac t ing  flow the  loca l  Reynold8 number is 

decreased by a f ac to r  of e igh t  from t he  Lourfold increase i n  

temperature. The decrease i n  Reynolds number increases  xS/H for t h e  

r eac t ing  flow. 

The passing frequency from both the  sch l i e ren  movies and LDV 

spec t r a  are compared i n  Figures  3.47 and 3.48. Near t h e  s t e p  f o r  t h e  

medium Reynolds number flo-r (Figure 3.47) t h e  sch l i e ren  measurements 

g ive  a passing frequency 50% higher  than the  passing frequency 

measured from the  LDV. A t  x/H = 7 t he  d i f fe rence  is s t i l l  3% (Figure 

3.48). The Strouhal number, S t rH  * ET/Uc, i b  compared f o r  t he  two 

measurements i n  Figure 3.50. The Strouhal number da t a  from the  

sch l i e ren  movies does not have a s imi l a r  shape fo r  t he  two entrance 

Reynolds numbers and is cons i s t en t ly  higher  than the  LDV data .  

Three-dimensional breakdown of the  r eac t ing  l aye r  probably causes some 

of the  discrepancy. As mentioned before ,  t h e  flame seems t o  s t a b i l i z e  

a t  more than one loca t ion  across  the  s t ep .  A c lose  examination of t he  

sch l i e req  movies ind ica t e  t h a t  the  l aye r  breakdown is  not always 

two-dimensional. Since the LDV measurements of the  passing frequency 

are made a t  8 s ing le  poin t ,  they are not e f fec ted  by the  

three-dimensionalit ies.  The second problem with the  sch l i e ren  

histograms i s  t h a t  they are not t r u e  spec t ra  of the  passing frequency. 

There is no co r re l a t ion  of motion with wavelengths longer than the  

d is tance  between eddies.  Thus the  estimated passing frequency i s  

higher than one determined from a t r u e  frequency ana lys i s .  

The Strouhal number, S t rH,  for both non-reacting and r eac t ing  

flow a r e  p lo t ted  i n  Figure 3.51. The eddies i n  the  reac t ing  Layer 

form l a t e r  but e t  the eame frequency, StrH' 2.0, as the  isothermal 



flow. a i r  ruggertr  

t he  reac t ing  flow 

89 , , ,. . - 9 . -  r?  (?:,,; ..,. r . - L  :...-'. 3 

OF p 0 3 ~  Q'JAiiTY 

t h a t  t he  acsu r t i c  peaks which are v i r i b l e  only i n  

do not a f f ec t  the  eddy fornat ion frequency. The 

irothermal da t a  appear8 t o  vary l i k e  8 mixing layer  S t r E  - l / x  between 

x/H = 1 - 4. Speci f ica l ly  the  Strouhal rider rhould be given by 

(Brown and Roehko, 19741, 

3.6 

where xo i e  the  v i r t u a l  o r ig in  and a i e  a conetant. In order t o  

determine the  v i r t u a l  orgin,  Equation 3.6 i e  rearranged ae,  

- uc = 1(") - -(* 1 x  
a H  a H  - 

Ef 
3.7 

The ieothermal da ta  i s  plot ted i n  tha t  form i s  Figure 3.52. The values 

of a and % are determined from a least oquare f i t  of the  da t a  between 

x/E - 1 - 4. The growth rate of the  rhear layer  (Figure 3.18) is only 

l i nea r  i n  'hat region. The v i r t u a l  o r ig in  i n  Figure 3.52 i e  downstream 

of the  s t ep  a8 i n  the  growth rate da ta  eugdeeting tha t  the boundary 

layer  The slope of the  leart rquaree 

f i t  is nearly ident ica l  fo r  the  two d i f f e ren t  entrance conditione. 

is tripped (Foe Section 3.3.2). 

The Strouhal number, StrH, i n  the  irothermal layer is plot ted 

with respect t o  the v i r t u a l  or ig in  i n  Figure 3.53 for  ./E = 1 - 4. The 

Strouhal number c l ea r ly  ham a l / ( x  - ~ 0 )  dependence given by, 

S t rH = 1.281i 
(x -  x o )  

3.8 

On the  average werytime the d i r tance  fram the  v i r t u a l  o r ig in  i e  
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increased by 2.6 the Strouhal number is halved. 

In the isothermal layer coalescence seems to continue beyond 

x/H - 4 (Figure 3.51). There is not a clear trend in StrH for 

x/H > 5,  as the convection velocity of the eddies, Uc, is difficult to 

estimate near reattachment. Bradshaw and Wong (1972) reported that the 

eddies are split in two near reattachment. The rapid decrease in 

turbulence near reattachment is attributed to the @@bifurcation of the 

shear layer at reattachment". They found at reattachment the length 

scale of the energy producing eddies is halved. As seen in Figure 3.51 

eddy splitting does not take place. The data suggests that the 

wavelength actually increases slightly through the reattachment 

region. Thus the rapid decrease in shear stress near reattachment is 

not a result of eddie splitting. 

The Strouhal number of the reacting data (Figure 3.51) does not 

show the simple l/(x - xo) dependence in the linear growth region 

(x/H = 1 - 3, Figure 3.19). The Strouhal number only decreases 

slightly between x/H = 1 - 3. In Figure 3.54 the Strounal nrmrbe7 is 

replorted with respect to the virtual origin of the layer estimated 

from growth rate data (Figure 3.19). Only the data in the linear 

growth region (x/H = 1 - 3) ic used in the curve fit. The coalescence 

rate is much lower than the isothermal layer having a weak dependence 

on the streamwise coordinate: 

the 

StrH - 1.79H 
0 , 1 1 7  ( x - x o )  

3.9 

Thus the effect of combustion and volumetric expansion is to greatly 

reduce the pairing process as a growth mechanism in the shear layer. 
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The rhear layer  growr primarily by entrainment of f lu id  and v o l m e t r i c  

expansion ar the  f lu id  r eac t r .  

After the  f a i r l y  conrtant region in the  react ing rbear layer ,  

S t rH decreares &am ./E = 3 t o  x/€l 7 (Figure 3.51). The eddy 

wavelength increases i n  t h i s  region from heat  expansion. The eddies 

are no longer retarded by the  rec i rcu la t ion  sone ar they continue t o  

burn and accelerate.  - 
The mean rpacing, 1, between the  eddies i n  nixing layerr  i r  j u s t  

- 
1 * Uc/T. For the  isolhermal layer the  spacing W i l l  be (Equation 

3.8) : 

3.10 

This i s  a larger  spacing than found in  tvo-stream mixing layers  but 

similar Brown 

and Roshko (1974) estimated the uean spacing t o  be i= 0.92% from 

Kolpin'a (1964) data.  

t o  a s ingle  stream mixing layer formed at a round jet .  

The mean spacing i n  the react ing layer  (x/H = 1 - 3) i s  nearly 

constant (Equation 3.9) , 

- 
1 0.56 ( x - XO 0 ,117  3.11 

emphasizing the low r a t e  of coalescence. 

The mean eddy spacing in  isothermal layers  is l i nea r ly  dependent 

on 6u, 1 = c dW' Brow and Rorhko (1974) campiled mixing layer da ta  and 

estimated the constant,  c ,  t o  be about 3. This constant can be 

- 

wri t ten  i n  terms of the  pansing frequency a s ,  
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3.12 

The inverse Strouhal number based on vorticity chiclmess, U c f ( T 6 J ,  is 

shown in Figure 3.55 for the non-reacting and reacting shear layer. 

The isothermal data approaches a value of c = 2.5, which means the 

eddie mean spacing is 2.5 times the vorticity thickness. The reacting 

shear layer shows no constant value since the coalercence raLe is very 

small and the wavelength, 1, is nearly constant with distance. 
- 
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fable 3.1 Entry ?low Coobit* 

9.1 0.0 1 . S  x 10' 140 0.63 2.58 0.015 0.040 

9.1 0.57 1.5 x 10' 150 0.62 2.50 0.030 0.045 

13.3 0.0 2.2 x 10' 180 0.50 2.46 0.020 0.050 

13.3 0.51 2.2 x lo' 190 C.55 2.48 0.070 0.055 

22.2 0.0 3.7 x lC' 280 0.47 2.42 3.020 0.080 

22.2 0.57 3.7 x 10' 250 0.42 2.11 0.030 0.070 

1.5 x 10' 0 140 6.5 

1.5 x 10' .57 150 4 .3  

2.2 104 o 180 7 .O 

2.2 x 10' .57 190 4.5 

3.7 x 10' 0 280 5 .8  

3.7 x 10' .s7 2sc 5.3 
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Table 3.3 Eddy F O N t i -  ?amition 

i.5 x 10' 0.0 0.5 4 . 3  - 
0.57 1.0 + - 3  0.89 + .14 

0.0 0.5 + . 3  

0.57 1.0 + - 3  0.67 + -08 

- - i.5 x lob 

- 2.2 x 10' 

2.2 x 10' - - 
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c)  High Reynolds number. 

Figure 3.4 Comparison o f  LDV and hot wire velocity 
I I E a S u m i I t S  i n  the entry flow. 
( x / H  = 0,  t/H = G). 
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1 
n 

Figure 3 .9  Hot wire spectra o f  the u -ve loc i ty  a t  the step 
without packing as used by Ganji and Sawyer 
(1980) ( x / H = O ,  y/H=9.5,  z / H = O ,  $=O). 
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Figure 3.10 Hot wire spectra of the u-velocity a t  the 
step, with stainless steel packing and 
screens [ x i H = O ,  y/H=0.5 ,  z / H = O ,  4.0). 
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Figure 3.11 Typical centerline streamwisc velocity profile 
in the shear layer (0 time integrated mean 
v e l o c i t y ,  - numerical rlieari velocity). 
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i i g u w  3.18 Vort ic i ty  thickness o f  the non-reacting 
shear layers. 
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Figure 3.20 Comparison o f  vor t ic i ty  thickness for  
reacting and non-reacting shear layers. 
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Figure 3,49 Sequence of LDV spectra t e k w  i n  
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The p imary aim of t h i s  uork is t o   reas as t he  e f f e c t  of 

c d u r t i o n  on rhe rearward-facing o tep  flou. The flw f i e l d  i o  

docuaented by laser Doppler velocimetrp measurements of the turbulen t  

ve loc i ty  md high rpeed r ch l i e ren  v i sua l i za t ion .  The r e s u l t @  and 

conclusions of the inves t iga t ion  with regard to  t h e  d i f f e r e n t  arpects 

of the  f l o w  f i e l d  are given i n  the  following sec t ions .  

In  i t i a1 Coad i t ivns 

The s ta te  of ;he i n i t i a l  boundary layer  a t  repara t ion  is 

determined. The boundiry layer is p a r t i a l l y  t r ipped having high 

turbulence leve l3  4 t F .  a iua inar  p r o f i l e .  This p a r t i a l  t r i pp ing  has  

tw e f f e c t s .  The l inear  growth rate reg.  *n of t he  shear  layer i e  

increased and the v i r t u a l  o r i g i n  appears downstream of the  s t ep .  

Mean Velocity Flow F i e l d  - -- 
The mean ve loc i ty  f low f i e l d  is measured f o r  both r eac t ing  

non-reacting flow. The primary e f f e c t s  of c a ~ b u s t i o n  are: 

1. 

2 .  

3 .  

The v i r t u a l  o r i g i n  of the  reac t ing  shear layer  defined by t h e  

mean ve loc i ty  p r o f i l e s  appears f a r t h e r  downstream of t h e  r t e p  but  

t h e  growth rate of the  ehear layer  is unchanged. 

I n  the  reac t ing  shear layer ,  the flame as seen from rch l i e ren  

observat ions propagates f a s t e r  i n t o  the incoming inv i r c id  

r eac t an t s  than the rhear layer defined by the  mean veloc i ty .  

The reac t ing  ehear layer  defined by the  mean ve loc i ty  i s  s h i f t e d  

toward the  r e c i r c u l a t i c n  zone. Heat expansion fram t he  reac t ing  

eddies propagating i n t o  the  premixed r eac t an t s  increases  the  
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4. 

velocity at the top of the layer and lowerr tbe upper boundary of 

the rheu layer defined by the mean velocity. Beat expanoion 

increner tbe velocity differeace i n  tbe lawar edge of tbe rbear 

layer and causer it to grow into the recirculation sone more 

rapidly. 

Ibe reattachment length of the reactiu r h e u  layer i o  rhortened 

by 30% due to tbc rhift of the &ear layer toward the 

recirculation -e. The trmrverre velocity (v) a h 0  rhwr thio 

downward rhift . 
Turbulence lkveloprcnt 

The turbulence intensity and the higher order rarentr 

turbulence are leasured throughout the flow field streamire 

following results: 

of the 

uith the 

1. 

2. 

3 .  

4.  

5 .  

Comburtian causes the peak parition8 of the turbulence intensity 

profiles to shift toward the recirculation tone confirring the 

mean velocity results. 

Tbe turbulence levelm decreme rapidly 1 - 2 rtep height. before 

reattachment for both reacting and non-reactiq caoem due to 

curvature effects. 

In the reacting layer, the maximum turbulence lwelr are 30% 

higher and have a double-peak in their variation with x. 

Fox the rhear layer defined by mean velocity, the nan-C.urri.a 

behavior is rimilar for both the non-reacting and reacting 

conditions. 

Under coeburtion, there io non=Caurmian behavior above the rhear 

layer defined by the moa velocity, The velocity PD? io 

poritively rkcvcd from the hpelliag effect of large scale 
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otructureo expandiw betveea t h s  top of t he  rhear  layer .ad t h e  

upper f l a e  boundary. 

6. The streamwire ve loc i ty  PDF8 are double-peaked i n  t h e  reacting 

rhear  layer  near t he  otep.  The PDF8 ut eingle-peaked in a11 

o the r  cares. In te rmi t ten t  f o r r a t i o n  of  t h e  l u g e  r o d e  

s t r u c t u r e s  nea t  t h e  s t e p  i n  the  reac t ing  l aye r  could hme caured 

t h e  double-peak. 

Large Scale  S t ruc tu re  Development 

The la rge  s c a l e  s t r u c t u r e s  are observed wi th  high speed r ch l i e ren  

photography and frequency u t a l y r i s  of t h e  LDV r igna l .  The following 

observat ions are made: 

1. As reported by Canji  and Sawyer (19801, t he  la rge  rcalc 

s t r u c t u r e s  are found t o  cont ro l  t he  overall r t r u c t u r e  of t h e  

reac t ing  shear layer .  Reaction occurs within the  eddies as they 

en t r a in  premixed r eac t an t s  and hot products. The growth of t he  

la rge  s c a l e  s t r u c t u r e s  i e  t i e d  t o  the  piopagation of t he  f l m e .  

2 .  The formation of t he  eddies is delayed i n  the  reac t ing  rhear  

layer as the  loca l  Reynolds number is reduced by canbustion. 

?. As Lren from the  sch l ie ren  v i sua l i za t ion ,  the  propagation of t he  

flame i n t o  the  incoming r eac t an t s  extends above the  rhear  layer  

defined by the  rean  ve loc i ty  p ro f i l e s .  The upper edge of t he  

reac t ing  la rge  s c a l e  r t r u c t u r e s  def ines  the  flame boundary. 

4. The most s t r i k i n g  e f f e c t  of comburtion is the  reduction of eddy 

coalercence i n  the  reac t ing  shear layer .  The pai r ing  procers is 

near ly  eliminated as a growth mechanism i n  the  reac t ing  layer .  

The layer grows pr imari ly  by entrainment of f lu id  and heat  

expanrion. 
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